Faraut / Kaneyuki / Koranyi | Analysis and Geometry on Complex Homogeneous Domains | Buch | 978-1-4612-7115-4 | sack.de

Buch, Englisch, 540 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 838 g

Reihe: Progress in Mathematics

Faraut / Kaneyuki / Koranyi

Analysis and Geometry on Complex Homogeneous Domains


1. Auflage 2012
ISBN: 978-1-4612-7115-4
Verlag: Birkhäuser

Buch, Englisch, 540 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 838 g

Reihe: Progress in Mathematics

ISBN: 978-1-4612-7115-4
Verlag: Birkhäuser


A number of important topics in complex analysis and geometry are

covered in this excellent introductory text. Written by experts in

the subject, each chapter unfolds from the basics to the more complex.

The exposition is rapid-paced and efficient, without compromising

proofs and examples that enable the reader to grasp the essentials.

The most basic type of domain examined is the bounded symmetric

domain, originally described and classified by Cartan and Harish-

Chandra. Two of the five parts of the text deal with these domains:

one introduces the subject through the theory of semisimple Lie

algebras (Koranyi), and the other through Jordan algebras and triple

systems (Roos). Larger classes of domains and spaces are furnished by

the pseudo-Hermitian symmetric spaces and related R-spaces. These

classes are covered via a study of their geometry and a presentation

and classification of their Lie algebraic theory (Kaneyuki).

In the fourth part of the book, the heat kernels of the symmetric

spaces belonging to the classical Lie groups are determined (Lu).

Explicit computations are made for each case, giving precise results

and complementing the more abstract and general methods presented.

Also explored are recent developments in the field, in particular, the

study of complex semigroups which generalize complex tube domains and

function spaces on them (Faraut).

This volume will be useful as a graduate text for students of Lie

group theory with connections to complex analysis, or as a self-study

resource for newcomers to the field. Readers will reach the frontiers

of the subject in a considerably shorter time than with existing

texts.

Faraut / Kaneyuki / Koranyi Analysis and Geometry on Complex Homogeneous Domains jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


I Function Spaces on Complex Semi-groups by Jacques Faraut.- I Hilbert Spaces of Holomorphic Functions.- II Invariant Cones and Complex Semi-groups.- III Positive Unitary Representations.- IV Hilbert Function Spaces on Complex Semi-groups.- V Hilbert Function Spaces on SL(2,?).- VI Hilbert Function Spaces on a Complex Semi-simple Lie Group.- II Graded Lie Algebras and Pseudo-hermitian Symmetric Spaces by Soji Kaneyuki.- I Semisimple Graded Lie Algebras.- II Symmetric R-Spaces.- III Pseudo-Hermitian Symmetric Spaces.- III Function Spaces on Bounded Symmetric Domains by Adam Kordnyi.- I Bergman Kernel and Bergman Metric.- II Symmetric Domains and Symmetric Spaces.- III Construction of the Hermitian Symmetric Spaces.- IV Structure of Symmetric Domains.- V The Weighted Bergman Spaces.- VI Differential Operators.- VII Function Spaces.- IV The Heat Kernels of Non Compact Symmetric Spaces by Qi-keng Lu.- I Introduction.- II The Laplace-Beltrami Operator in Various Coordinates.- III The Integral Transformations.- IV The Heat Kernel of the Hyperball R?(m, n).- V The Harmonic Forms on the Complex Grassmann Manifold.- VI The Horo-hypercircle Coordinate of a Complex Hyperball.- VII The Heat Kernel of RII(m).- VIII The Matrix Representation of NIRGSS.- V Jordan Triple Systems by Guy Roos.- I Polynomial Identities.- II Jordan Algebras.- III The Quasi-inverse.- IV The Generic Minimal Polynomial.- V Tripotents and Peirce Decomposition.- VI Hermitian Positive JTS.- VII Further Results and Open Problems.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.