Faradzev / Ivanov / Klin | Investigations in Algebraic Theory of Combinatorial Objects | E-Book | sack.de
E-Book

E-Book, Englisch, Band 84, 510 Seiten, eBook

Reihe: Mathematics and its Applications

Faradzev / Ivanov / Klin Investigations in Algebraic Theory of Combinatorial Objects


Erscheinungsjahr 2013
ISBN: 978-94-017-1972-8
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 84, 510 Seiten, eBook

Reihe: Mathematics and its Applications

ISBN: 978-94-017-1972-8
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark



X Köchendorffer, L.A. Kalu:lnin and their students in the 50s and 60s. Nowadays the most deeply developed is the theory of binary invariant relations and their combinatorial approximations. These combinatorial approximations arose repeatedly during this century under various names (Hecke algebras, centralizer rings, association schemes, coherent configurations, cellular rings, etc.-see the first paper of the collection for details) andin various branches of mathematics, both pure and applied. One of these approximations, the theory of cellular rings (cellular algebras), was developed at the end of the 60s by B. Yu. Weisfeiler and A.A. Leman in the course of the first serious attempt to study the complexity of the graph isomorphism problem, one of the central problems in the modern theory of combinatorial algorithms. At roughly the same time G.M. Adelson-Velskir, V.L. Arlazarov, I.A. Faradtev and their colleagues had developed a rather efficient tool for the constructive enumeration of combinatorial objects based on the branch and bound method. By means of this tool a number of "sports-like" results were obtained. Some of these results are still unsurpassed.

Faradzev / Ivanov / Klin Investigations in Algebraic Theory of Combinatorial Objects jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1.1 Cellular rings and groups of automorphisme of graphs.- 1.2 On p-local analysis of permutation groups.- 1.3 Amorphic cellular rings.- 1.4 The subschemes of the Hamming scheme.- 1.5 A description of subrings in % MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaabm
% aabaGaam4uamaaBaaaleaacaWGWbWaaSbaaWqaaiaaigdaaeqaaaWc
% beaakiabgEna0kaadofadaWgaaWcbaGaamiCamaaBaaameaacaaIYa
% aabeaaaSqabaGccqGHxdaTcaGGUaGaaiOlaiaac6cacqGHxdaTcaWG
% tbWaaSbaaSqaaiaadchadaWgaaadbaGaamyBaaqabaaaleqaaaGcca
% GLOaGaayzkaaaaaa!49CD!]]



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.