Fang / Zhang | China's High-Speed Rail Technology | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 596 Seiten

Reihe: Advances in High-speed Rail Technology

Fang / Zhang China's High-Speed Rail Technology

An International Perspective
1. Auflage 2018
ISBN: 978-981-10-5610-9
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

An International Perspective

E-Book, Englisch, 596 Seiten

Reihe: Advances in High-speed Rail Technology

ISBN: 978-981-10-5610-9
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book presents cutting-edge theories, techniques, and methodologies in the multidisciplinary field of high-speed railways, sharing the revealing insights of elite scholars from China, the UK and Japan. It demonstrates the achievements that have been made regarding high-speed rail technologies in China from all aspects, while also providing a macro-level comparative study of related technologies in different countries. The book offers a valuable resource for researchers, engineers, industrial practitioners, graduate students, and professionals in the fields of Vehicles, Traction Power Supplies, Materials, and Infrastructure.



Fang / Zhang China's High-Speed Rail Technology jetzt bestellen!

Weitere Infos & Material


1;Foreword;6
2;Preface;9
3;Contents;11
4;Editors and Contributors;15
5;Copy editors:;22
6;Overview of High-Speed Rail Technology Around the World;23
7;1 Sustainability Development Strategy of China’s High-Speed Rail;24
7.1;1 Overview;24
7.2;2 Innovation Achievements of China’s High-Speed Rail Technology;25
7.2.1;2.1 Basic Theory Study of the High-Speed Train;26
7.2.2;2.2 Design and Manufacturing Technologies of the High-Speed Train;27
7.3;3 Engineering Application of Domestic High-Speed Train;29
7.3.1;3.1 Opening and Operation of the Wuhan–Guangzhou High-Speed Train;29
7.3.2;3.2 Opening of the Beijing–Shanghai High-Speed Line;30
7.3.3;3.3 Domestic 400 km/h Comprehensive Inspection Car Came off the Assembly Line;30
7.4;4 Development Prospect of China’s High-Speed Rail Technology;31
7.4.1;4.1 China’s High-Speed Rail Network Plan in the Next 10 Years;31
7.4.2;4.2 Study and Deployment of China’s High-Speed Rail Research in the Next 5 Years;34
7.4.2.1;4.2.1 Safety Assurance Technology of the Rail Transit System;34
7.4.2.2;4.2.2 High-Energy Efficiency of Traction Power Supply and Transmission Key Techniques of Rail Transit;34
7.4.2.3;4.2.3 Life Cycle Maintenance Technique of Rail Transit;35
7.4.2.4;4.2.4 Guided Transport System Mode Diversification and Equipment Study;35
7.4.2.5;4.2.5 Key Technology for 400 km/h and Above High-Speed Passenger Transport Equipment;36
7.4.2.6;4.2.6 Railway Comprehensive Effectiveness and Service Level Improvement Under High-Speed Rail Network Conditions;36
7.4.2.7;4.2.7 Regional Rail Transport Co-transport and Service Technology;36
7.4.2.8;4.2.8 Space–Air–Train–Ground Integrated Rail Transport Safety and Control Technology;37
7.4.2.9;4.2.9 Rail Transit Freight Transportation Rapid Technology and Equipment Studies;37
7.4.2.10;4.2.10 Key Technology Study and Equipment Development of a Maglev Transport System;38
7.5;5 Conclusions;38
7.6;Appendix;39
7.7;References;45
8;2 Key Problems Faced in High-Speed Train Operation;48
8.1;1 Introduction;48
8.2;2 Train-Track Coupling System Dynamic Model;50
8.3;3 Interaction of Wheel/Rail;52
8.4;4 Vibration and Noise;55
8.5;5 Further Work;57
8.6;Appendix;58
8.7;References;63
9;3 Background of Recent Developments of Passenger Railways in China, the UK and Other European Countries;67
9.1;1 Early Railway Development in China and the UK;67
9.2;2 Further Development of the Railways;68
9.3;3 Speed-up and High Speed Rail in the UK;69
9.4;4 Channel Tunnel and Its Link to London;71
9.5;5 Development of High Speed in Europe;73
9.6;6 Safety of High Speed Trains;74
9.7;7 Railway Research in the UK;76
9.8;8 Development of High Speed in China;78
9.9;9 Future High Speed Rail in the UK;79
9.10;10 Concluding Remarks;79
9.11;Appendix;80
9.12;Brief Bibliography;83
9.13;References;83
10;4 Comparison of the Technologies of the Japanese Shinkansen and Chinese High-Speed Railways;86
10.1;1 Brief History of Japanese and Chinese High-Speed Railways;87
10.2;2 Comparison of HSRs in Japan and China by Basic Transportation Figures;87
10.3;3 Comparison of Technological Achievements of HSRs in Japan and in China;88
10.3.1;3.1 Outline;88
10.3.1.1;3.1.1 Original Technologies of Japan and of China;88
10.3.1.2;3.1.2 Original Design of Japan’s Cars: Development of Lightweight Bogies with Stable Operation at High Speed (Sone 2014);89
10.3.1.3;3.1.3 Original Design of Japan’s Cars: Distributed Traction System with All Axles Motored;90
10.3.1.4;3.1.4 Chinese Design Concept;91
10.3.2;3.2 Comparison of Achievements of the HSR in Japan and in China Relating to Subsystems Used;92
10.3.2.1;3.2.1 Power Feeding System;92
10.3.2.2;3.2.2 Electromagnetic Compatibility;92
10.3.2.3;3.2.3 Phase Balancing Measures After Introduction of Regenerative Trains;93
10.3.2.4;3.2.4 Result of Lightweight Design of Cars;94
10.3.2.5;3.2.5 Cab Signal ATC;94
10.3.2.6;3.2.6 Poor Tracks and Infrastructure in Japan;95
10.4;4 Other Developed Countries’ HSR Technologies (Akiyama 2014);95
10.4.1;4.1 Britain;95
10.4.2;4.2 France and Germany;96
10.4.3;4.3 French Versus Japanese Technologies;96
10.4.4;4.4 French Versus Japanese Technologies in Recent Years;97
10.5;5 Technologies of Chinese Origin;98
10.6;6 Further Discussion on Technologies of Japan and China;100
10.6.1;6.1 Optimum Motored to Non-motored Cars (MT) Ratio and Brake System Design;100
10.6.2;6.2 Safety and Reliable Design and Operation;101
10.6.3;6.3 Design of Automatic Train Protection (ATP);101
10.7;7 Peculiarity of Japanese and Chinese Railways;102
10.8;8 Important Relationship to Be Kept Between Japanese and Chinese HSRs;102
10.9;9 Conclusions;103
10.10;Appendix;103
10.11;References;105
11;Aerodynamics of High-Speed Rail;107
12;5 Unsteady Simulation for a High-Speed Train Entering a Tunnel;108
12.1;1 Introduction;108
12.2;2 Fundamental Flow Equations;109
12.3;3 Computational Domain and Mesh Generation;110
12.4;4 Results;111
12.4.1;4.1 Description of the Wave Propagation Process;111
12.4.2;4.2 Pressure Difference Amplitudes on the Train Surface and the Tunnel Wall;113
12.4.3;4.3 Microwave;114
12.4.4;4.4 Aerodynamic Forces of the Train;116
12.5;5 Conclusions;119
12.6;Acknowledgements;119
12.7;References;119
13;6 Aerodynamic Modeling and Stability Analysis of a High-Speed Train Under Strong Rain and Crosswind Conditions;121
13.1;1 Introduction;121
13.2;2 Numerical Simulation;123
13.2.1;2.1 Computational Model;123
13.2.2;2.2 Computational Domain;123
13.2.3;2.3 Computational Mesh;124
13.2.4;2.4 Boundary Conditions;125
13.3;3 Problem Description;125
13.4;4 Results and Discussion;126
13.4.1;4.1 Pressure Distribution on the Train Surface;126
13.4.2;4.2 Aerodynamic Force of Train Under Strong Rain and Crosswind Conditions;126
13.4.3;4.3 Aerodynamic Moment of Train Under Strong Rain and Crosswind Conditions;129
13.4.4;4.4 Stability Analysis of the Train Under Rain and Crosswind Conditions;129
13.5;5 Conclusions;132
13.6;References;132
14;7 Numerical Study on the Aerodynamic Performance and Safe Running of High-Speed Trains in Sandstorms;135
14.1;1 Introduction;135
14.2;2 Mathematical Model and Numerical Simulation;137
14.2.1;2.1 Eulerian–Eulerian Multiphase Model;137
14.2.2;2.2 Computational Simulation;138
14.2.3;2.3 Validation of the Numerical Model;139
14.2.3.1;2.3.1 Verification of Eulerian Two-Phase Model;139
14.2.3.2;2.3.2 Verification of the Train Model;139
14.3;3 Results and Discussion;141
14.3.1;3.1 Influence of Sand on the Drag Force;141
14.3.2;3.2 Influence of Sand on the Lift Force;142
14.3.3;3.3 Influence of Sand on the Side Force;143
14.3.4;3.4 Influence of Sand on the Overturning Moment;143
14.3.5;3.5 Influence of Sand on the Train’s Safety and Recommended Speed Limit Under Crosswind;144
14.4;4 Conclusions;146
14.5;References;147
15;8 Influence of Aerodynamic Braking on the Pressure Wave of a Crossing High-Speed Train;149
15.1;1 Introduction;149
15.2;2 Model of a High-Speed Train and Grids Partition;150
15.2.1;2.1 Geometric Model of a High-Speed Train with Aerodynamic Braking;150
15.2.2;2.2 Calculation Area and the Mesh Partition;150
15.2.2.1;2.2.1 Selected Section for the Calculation Area;150
15.2.2.2;2.2.2 Mesh Partition of a Single Train;152
15.2.2.3;2.2.3 Sliding Mesh;152
15.3;3 Numerical Simulation of the Aerodynamic Status of Crossing High-Speed Trains;153
15.3.1;3.1 Characteristic of the Air Flow Field;154
15.3.2;3.2 Influence of Aerodynamic Braking on the Crossing Train;154
15.4;4 Conclusions;157
15.5;References;158
16;9 A Numerical Approach to the Interaction Between Airflow and a High-Speed Train Subjected to Crosswind;159
16.1;1 Introduction;159
16.2;2 Governing Equations;161
16.2.1;2.1 Equations of Fluid Dynamics;161
16.2.2;2.2 Equations of Vehicle-Track Coupling Dynamics;161
16.3;3 Numerical Approach to the Interaction;162
16.3.1;3.1 Vehicle-Track Dynamics Solution Technique;162
16.3.2;3.2 Dynamic Mesh Technique;163
16.3.3;3.3 Solution Strategies;163
16.4;4 Computational Model and Domain;164
16.5;5 Numerical Simulation;167
16.5.1;5.1 Aerodynamics and Displacements;167
16.5.1.1;5.1.1 Head Coach;167
16.5.1.2;5.1.2 Middle Coach;170
16.5.1.3;5.1.3 Tail Coach;172
16.5.2;5.2 Dynamic Performances of Vehicle Track;174
16.6;6 Conclusions;177
16.7;References;177
17;10 Multi-objective Optimization Design Method of the High-Speed Train Head;180
17.1;1 Introduction;180
17.2;2 Basic Concepts and Optimization Process;183
17.2.1;2.1 Basic Concepts of Multi-objective Optimization;183
17.2.2;2.2 Multi-objective Optimization Process;184
17.3;3 3D Parametric Model of the Train;184
17.3.1;3.1 Entity Model of the Left Half of the Train Head;185
17.3.2;3.2 Parametric Model of the High-Speed Train;186
17.3.3;3.3 Optimization Design Variables;186
17.4;4 Aerodynamic Model;188
17.5;5 Vehicle System Dynamics Model;189
17.6;6 Multi-objective Optimization Algorithm;190
17.7;7 Numerical Simulation;191
17.8;8 Conclusion;194
17.9;References;195
18;11 Study on the Safety of Operating High-Speed Railway Vehicles Subjected to Crosswinds;198
18.1;1 Introduction;198
18.2;2 Dynamic Model of Coupled Vehicle–Track System in Crosswinds;200
18.2.1;2.1 Vehicle Model;201
18.2.2;2.2 Track Model;203
18.2.3;2.3 Wheel-Rail Contact Model;206
18.2.4;2.4 Vehicle–Track Excitation Model;207
18.2.5;2.5 Aerodynamic Forces on the Vehicle;208
18.3;3 Methods for Safety Assessment of Crosswinds;210
18.4;4 Simulation of High-Speed Vehicle Dynamic Behavior Under Crosswinds;211
18.4.1;4.1 Vehicle Dynamic Responses to Crosswind;212
18.4.2;4.2 Effect of Crosswind Attack Angle;216
18.4.3;4.3 Combined Effects of Vehicle Speed and Crosswind Speed;216
18.5;5 Evaluation of Operational Safety Area for High-Speed Vehicles Under Crosswind Excitations;219
18.6;6 Conclusion;221
18.7;References;223
19;High-Speed Rail Infrastructure and Material Innovations;225
20;12 A 2.5D Finite Element Approach for Predicting Ground Vibrations Generated by Vertical Track Irregularities;226
20.1;1 Introduction;226
20.2;2 2.5D Finite Element Method;228
20.3;3 Mathematical Model of Train Running on Track with Harmonic Irregularities;230
20.4;4 Numerical Results and Discussion;232
20.4.1;4.1 Effect of Amplitude of Track Irregularities on Dynamic Responses;233
20.4.2;4.2 Effect of Wavelength of Track Irregularities on Dynamic Responses;240
20.5;5 Conclusions;241
20.6;References;242
21;13 Smart Elasto-Magneto-Electric (EME) Sensors for Stress Monitoring of Steel Structures in Railway Infrastructures;244
21.1;1 Introduction;244
21.2;2 Tested Steel Bars;246
21.3;3 Magneto-Electric Sensing Unit;247
21.3.1;3.1 Working Principle;247
21.3.2;3.2 Performance Tests;248
21.4;4 Smart EME Sensor and Tension Tests;251
21.5;5 Conclusions;253
21.6;References;254
22;14 Recent Research on the Track-Subgrade of High-Speed Railways;256
22.1;1 Background;256
22.2;2 Dynamic Response of Track-Subgrade;257
22.3;3 Post-construction Settlement of the Track-Subgrade;259
22.4;4 Long-Term Serviceability of Subgrade;260
22.5;5 Summary;260
22.6;References;261
23;15 Microstructure and Properties of Cold Drawing Cu-2.5% Fe-0.2% Cr and Cu-6% Fe Alloys;263
23.1;1 Introduction;263
23.2;2 Materials and Methods;265
23.3;3 Results;265
23.4;4 Discussion;268
23.5;5 Conclusions;270
23.6;References;270
24;16 Microstructure and Hardness of Cu-12% Fe Composite at Different Drawing Strains;275
24.1;1 Introduction;275
24.2;2 Materials and Methods;276
24.3;3 Results;277
24.3.1;3.1 Microstructure;277
24.3.2;3.2 Structure Orientation;279
24.3.3;3.3 Vickers Hardness;281
24.4;4 Discussion;281
24.4.1;4.1 Microstructure Evolution;281
24.4.2;4.2 Hardness;284
24.5;5 Conclusions;285
24.6;References;286
25;High-Speed Rail Wheel/Rail Dynamics;289
26;17 Modeling of High-Speed Wheel–Rail Rolling Contact on a Corrugated Rail and Corrugation Development;290
26.1;1 Introduction;290
26.2;2 Model Descriptions;293
26.2.1;2.1 FE Model;293
26.2.1.1;2.1.1 An Overview;293
26.2.1.2;2.1.2 A Typical Process of Numerical Simulation and the Explicit Time Integration;295
26.2.1.3;2.1.3 Traction and Creepage;296
26.2.1.4;2.1.4 Material Model;298
26.2.2;2.2 Frictional Work and Wear Prediction;298
26.2.3;2.3 Corrugation Model;299
26.3;3 Results of Smooth Contact Surface;300
26.3.1;3.1 Dynamic Relaxation;300
26.3.2;3.2 Longitudinal and Vertical Forces;301
26.3.3;3.3 Contact Stresses and Frictional Work;302
26.4;4 Corrugation;304
26.4.1;4.1 Measurements on a High-Speed Line;304
26.4.2;4.2 Transient Wheel–Rail Interaction;305
26.4.3;4.3 Different Wavelengths and Depths;308
26.4.4;4.4 Different Traction Coefficients;309
26.4.5;4.5 Different Rolling Speeds;311
26.4.6;4.6 Comparison with the Multi-body Approach;312
26.5;5 Discussion;313
26.6;6 Summary and Conclusions;315
26.7;References;316
27;18 A 3D Model for Coupling Dynamics Analysis of High-Speed Train/Track System;320
27.1;1 Introduction;320
27.2;2 3D Modeling of High-Speed Train/Track System;323
27.2.1;2.1 Modeling Vehicle Subsystem;323
27.2.2;2.2 Modeling the Inter-vehicle Connection Subsystem;328
27.2.3;2.3 Modeling the Track Subsystem;330
27.2.4;2.4 Modeling the Wheel/Rail Contact Subsystem;333
27.2.5;2.5 Train/Track Excitation Model;335
27.2.6;2.6 Initial and Boundary Conditions of the Coupled Train/Track System;336
27.3;3 Verification of the Train/Track Model;337
27.4;4 Comparison of Dynamic Performances Obtained by TTM and VTM;339
27.4.1;4.1 Comparison of Vibration Frequency Components;339
27.4.2;4.2 Comparison of Ride Comfort;342
27.4.3;4.3 Comparison of Curving Performance;344
27.5;5 Conclusions;347
27.6;References;348
28;19 Effect of the First Two Wheelset Bending Modes on Wheel–Rail Contact Behavior;351
28.1;1 Introduction;351
28.2;2 Vehicle–Track Coupling Dynamic System;353
28.2.1;2.1 Flexible Wheelset Model;354
28.2.2;2.2 Wheel–Rail Contact Model;364
28.3;3 Results and Discussion;368
28.4;4 Conclusions;371
28.5;Appendix A;372
28.6;Appendix B;372
28.7;References;380
29;20 Influence of Wheel Polygonal Wear on Interior Noise of High-Speed Trains;382
29.1;1 Introduction;383
29.2;2 Measurement of Wheel Polygon and Vehicle Noise and Vibration;384
29.2.1;2.1 Test Overview;384
29.2.2;2.2 Characteristics of Wheel Diameter Difference and Polygon;385
29.2.3;2.3 Effect of Re-profiling on Vehicle Noise and Vibration;387
29.3;3 Model of Polygonal Wheel for Wheel/Rail Rolling Noise Calculation;388
29.3.1;3.1 Characteristics of Two Wheels with the Same Diameter Difference;389
29.3.2;3.2 Theory of Wheel/Rail Rolling Noise Prediction;390
29.3.3;3.3 Wheel/Rail Rolling Noise Prediction Results;394
29.4;4 Prediction Model of Interior Noise of Coach;396
29.4.1;4.1 Theory of the Hybrid FE-SEA;397
29.4.2;4.2 Interior Noise Simulation Model of the Coach End;398
29.5;5 Influence of Different Wheel Polygonal Wear on Noise;400
29.5.1;5.1 Characteristics of Wheel Polygon;400
29.5.2;5.2 Effect of Different Order of Wheel Polygon on Noise;401
29.5.3;5.3 Effect of Different Roughness Levels of Wheel Polygon on Noise;403
29.5.4;5.4 Effect of Different Phases of Wheel Polygon on Noise;405
29.6;6 Conclusions;408
29.7;Acknowledgements;409
29.8;References;409
30;21 Investigation into External Noise of a High-Speed Train at Different Speeds;411
30.1;1 Introduction;411
30.2;2 Noise Source Identification of High-Speed Train;413
30.2.1;2.1 Facility and Its Principle;413
30.2.2;2.2 Measurement of High-Speed Train Noise Sources;415
30.2.3;2.3 Frequency Characteristics of Main Noise Sources;419
30.2.4;2.4 Characteristics of SEL at Different Speeds;422
30.3;3 Pass-by Noise Magnitude and Its Characteristics;427
30.4;4 External Noise Behaviors as a Function of Speed;430
30.5;5 Conclusions;431
30.6;References;432
31;22 Effect of Softening of Cement Asphalt Mortar on Vehicle Operation Safety and Track Dynamics;434
31.1;1 Introduction;435
31.2;2 Coupling Dynamic Model of Vehicle and CRTS-I Slab Track;436
31.2.1;2.1 Dynamic Model of Vehicle Subsystem;436
31.2.2;2.2 Dynamic Model of Slab Track Subsystem;438
31.2.3;2.3 Model of Wheel-Rail Interaction in Rolling Contact;438
31.2.4;2.4 CAM Softening in the Vehicle-Track Coupling Dynamic Model;439
31.2.5;2.5 Evaluation Criteria of Railway Vehicle Derailment;439
31.3;3 Track/Subgrade Coupling Model;440
31.3.1;3.1 Finite Difference Model of Slab Track and Subgrade;440
31.3.2;3.2 CAM Softening in the Track Finite Difference Model;441
31.3.3;3.3 Contact Model of Track;441
31.3.4;3.4 Loading on the Track-Subgrade Finite Difference Model;443
31.4;4 Results and Discussion;443
31.4.1;4.1 Effect of CAM Softening on High-Speed Vehicle Operation Safety;444
31.4.2;4.2 Effect of CAM Softening on Track Displacement;444
31.4.3;4.3 Effect of CAM Softening on Slab Stress and Track Interface Failure;447
31.5;5 Conclusions;449
31.6;References;450
32;Advances in Traction Power Supply and Transportation Organization Technologies;452
33;23 A Two-Layer Optimization Model for High-Speed Railway Line Planning;453
33.1;1 Introduction;454
33.2;2 Decision Support Mechanism (DSM) for Line Planning;455
33.2.1;2.1 Stop-Schedule Optimization;456
33.2.2;2.2 Passenger Assignment Optimization;456
33.3;3 Modeling of Line Planning;457
33.3.1;3.1 Input Data;457
33.3.2;3.2 Model of the Stop-Schedule Optimization;458
33.3.2.1;3.2.1 Decision Variables;458
33.3.2.2;3.2.2 Objective Functions;458
33.3.2.3;3.2.3 Constraints;459
33.3.2.4;3.2.4 Coding and Initialization;460
33.3.2.5;3.2.5 Crossover Operator;461
33.3.2.6;3.2.6 Mutation Operator;461
33.3.2.7;3.2.7 Reproduction Operator;462
33.3.2.8;3.2.8 Termination;462
33.3.3;3.3 Model of the Passenger Assignment;462
33.3.3.1;3.3.1 Objective Functions;462
33.3.3.2;3.3.2 Constraints;463
33.4;4 Case Studies;463
33.4.1;4.1 Taiwan HSR;463
33.4.2;4.2 Beijing-Shanghai HSR;465
33.5;5 Conclusions and Future Work;468
33.6;References;469
34;24 Dynamic Performance of a Pantograph–Catenary System with the Consideration of the Appearance Characteristics of Contact Surfaces;472
34.1;1 Introduction;472
34.2;2 Model of the Pantograph–Catenary System;473
34.2.1;2.1 Catenary Model;473
34.2.2;2.2 Pantograph Model;474
34.2.3;2.3 Pantograph–Catenary System Model;475
34.3;3 Results of the Dynamic Performance;476
34.4;4 Validation by a Field Test;479
34.5;5 Analysis of the Influence of Contact Wire Irregularity;481
34.6;6 Analysis of the Influence of Double Pantographs;483
34.7;7 Conclusions;484
34.8;References;484
35;25 Design and Reliability, Availability, Maintainability, and Safety Analysis of a High Availability Quadruple Vital Computer System;486
35.1;1 Introduction;486
35.2;2 System Design;489
35.3;3 Hardware and Embedded Safe Operation System (ES-OS);491
35.4;4 Safety Bus and Deterministic Communication Schedule;494
35.5;5 System Modeling;496
35.6;6 Evaluation;498
35.6.1;6.1 Reliability;498
35.6.2;6.2 Availability;498
35.6.3;6.3 Maintainability;498
35.6.4;6.4 Safety;500
35.7;7 Conclusions;500
35.8;References;500
36;26 Design and Analysis of the Hybrid Excitation Rail Eddy Brake System of High-Speed Trains;502
36.1;1 Introduction;502
36.2;2 Theory of Eddy Brake System;503
36.2.1;2.1 Lift System of the Brake System;505
36.2.1.1;2.1.1 Status of Relief;505
36.2.1.2;2.1.2 Status of Brake;505
36.2.2;2.2 Brake Exciting System;506
36.2.3;2.3 Main Parameters of the Brake System;507
36.3;3 Simulation;508
36.3.1;3.1 Creating Finite Element Method (FEM) Model;508
36.3.2;3.2 Effects of Gap;510
36.3.2.1;3.2.1 When There is no Exciting;510
36.3.2.2;3.2.2 When There is Exciting;513
36.3.3;3.3 Effects of Electricity;514
36.4;4 Optimization;515
36.5;5 Conclusions;517
36.6;References;518
37;27 Simulation Software for CRH2 and CRH3 Traction Driver Systems Based on SIMULINK and VC;520
37.1;1 Introduction;520
37.2;2 Simulation Model;521
37.3;3 Developed Simulation Software;523
37.4;4 Simulation Results;524
37.4.1;4.1 Traction and Brake Performance of CRH2;524
37.4.2;4.2 Speed Regulation Performance Simulation;526
37.4.3;4.3 Transient Performance of Fault Condition;526
37.5;5 Conclusions;527
37.6;References;528
38;28 Electromagnetic Environment Around a High-Speed Railway Using Analytical Technique;531
38.1;1 Introduction;532
38.2;2 Magnetic Field Formulae;534
38.2.1;2.1 Geometry of Railway System;534
38.2.2;2.2 Integrated Formulae;534
38.2.3;2.3 Trapped Surface Wave;536
38.2.4;2.4 Lateral Wave;537
38.2.5;2.5 Final Formulae for the Magnetic Field;538
38.3;3 Computation Results and Comparison;538
38.4;4 Conclusions;541
38.5;Appendix;541
38.6;References;542
39;29 Optimal Condition-Based Maintenance Strategy Under Periodic Inspections for Traction Motor Insulations;545
39.1;1 Introduction;546
39.2;2 Problem Statement and Description;547
39.3;3 Mathematical Model Development;550
39.3.1;3.1 Failure Rate of Insulations Under Shocks;550
39.3.2;3.2 State Transition Probability During a Single Inspection Interval;551
39.3.3;3.3 Mathematical Models for the Variables in the Optimization Model;553
39.3.3.1;3.3.1 Expected Time at State 0 within a Cycle;553
39.3.3.2;3.3.2 Expected Time at State 1 in a Cycle;554
39.3.3.3;3.3.3 Probability of PM and CM in a Cycle;554
39.3.3.4;3.3.4 Expected Number of Inspections in a Cycle;555
39.4;4 Special Case;555
39.4.1;4.1 State Transition Probability Within One Inspection Interval;556
39.4.2;4.2 Mathematical Models for the Variables in Optimization Model;556
39.4.3;4.3 Probability of PM, CM, and the Expected Number of Inspections in One Cycle;557
39.5;5 Numerical Investigation and Discussion;557
39.6;6 Conclusions;559
39.7;References;560
40;30 A Combined Simulation of High-Speed Train Permanent Magnet Traction System Using Dynamic Reluctance Mesh Model and Simulink;564
40.1;1 Introduction;565
40.2;2 Dynamic Reluctance Mesh Model;565
40.2.1;2.1 Principle of Basic Reluctance Mesh (RM) Model;565
40.2.2;2.2 Dynamic Reluctance Mesh Model;567
40.2.3;2.3 DRM Model of the PM Traction Motor;567
40.2.4;2.4 Simulation Results of DRM Model;568
40.3;3 Combined Model Using DRM and Simulink;570
40.3.1;3.1 Dynamic Modeling and Interface;571
40.3.2;3.2 Vector Control System;572
40.3.3;3.3 Combine DRM and Simulink Model;573
40.4;4 Simulation Results;574
40.4.1;4.1 Constant Parameter PMSM Traction System Simulink Models;574
40.4.2;4.2 Combined Simulation Using DRM and Simulink;574
40.5;5 Conclusions;577
40.6;References;578
41;31 3D Thermal Analysis of a Permanent Magnet Motor with Cooling Fans;580
41.1;1 Introduction;581
41.2;2 AFPM Machine;582
41.3;3 CFD Modeling;582
41.4;4 Analysis of CFD Results;588
41.5;5 Conclusions;588
41.6;References;589
42;Index;591



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.