E-Book, Englisch, 596 Seiten
Fang / Zhang China's High-Speed Rail Technology
1. Auflage 2018
ISBN: 978-981-10-5610-9
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
An International Perspective
E-Book, Englisch, 596 Seiten
Reihe: Advances in High-speed Rail Technology
ISBN: 978-981-10-5610-9
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book presents cutting-edge theories, techniques, and methodologies in the multidisciplinary field of high-speed railways, sharing the revealing insights of elite scholars from China, the UK and Japan. It demonstrates the achievements that have been made regarding high-speed rail technologies in China from all aspects, while also providing a macro-level comparative study of related technologies in different countries. The book offers a valuable resource for researchers, engineers, industrial practitioners, graduate students, and professionals in the fields of Vehicles, Traction Power Supplies, Materials, and Infrastructure.
Autoren/Hrsg.
Weitere Infos & Material
1;Foreword;6
2;Preface;9
3;Contents;11
4;Editors and Contributors;15
5;Copy editors:;22
6;Overview of High-Speed Rail Technology Around the World;23
7;1 Sustainability Development Strategy of China’s High-Speed Rail;24
7.1;1 Overview;24
7.2;2 Innovation Achievements of China’s High-Speed Rail Technology;25
7.2.1;2.1 Basic Theory Study of the High-Speed Train;26
7.2.2;2.2 Design and Manufacturing Technologies of the High-Speed Train;27
7.3;3 Engineering Application of Domestic High-Speed Train;29
7.3.1;3.1 Opening and Operation of the Wuhan–Guangzhou High-Speed Train;29
7.3.2;3.2 Opening of the Beijing–Shanghai High-Speed Line;30
7.3.3;3.3 Domestic 400 km/h Comprehensive Inspection Car Came off the Assembly Line;30
7.4;4 Development Prospect of China’s High-Speed Rail Technology;31
7.4.1;4.1 China’s High-Speed Rail Network Plan in the Next 10 Years;31
7.4.2;4.2 Study and Deployment of China’s High-Speed Rail Research in the Next 5 Years;34
7.4.2.1;4.2.1 Safety Assurance Technology of the Rail Transit System;34
7.4.2.2;4.2.2 High-Energy Efficiency of Traction Power Supply and Transmission Key Techniques of Rail Transit;34
7.4.2.3;4.2.3 Life Cycle Maintenance Technique of Rail Transit;35
7.4.2.4;4.2.4 Guided Transport System Mode Diversification and Equipment Study;35
7.4.2.5;4.2.5 Key Technology for 400 km/h and Above High-Speed Passenger Transport Equipment;36
7.4.2.6;4.2.6 Railway Comprehensive Effectiveness and Service Level Improvement Under High-Speed Rail Network Conditions;36
7.4.2.7;4.2.7 Regional Rail Transport Co-transport and Service Technology;36
7.4.2.8;4.2.8 Space–Air–Train–Ground Integrated Rail Transport Safety and Control Technology;37
7.4.2.9;4.2.9 Rail Transit Freight Transportation Rapid Technology and Equipment Studies;37
7.4.2.10;4.2.10 Key Technology Study and Equipment Development of a Maglev Transport System;38
7.5;5 Conclusions;38
7.6;Appendix;39
7.7;References;45
8;2 Key Problems Faced in High-Speed Train Operation;48
8.1;1 Introduction;48
8.2;2 Train-Track Coupling System Dynamic Model;50
8.3;3 Interaction of Wheel/Rail;52
8.4;4 Vibration and Noise;55
8.5;5 Further Work;57
8.6;Appendix;58
8.7;References;63
9;3 Background of Recent Developments of Passenger Railways in China, the UK and Other European Countries;67
9.1;1 Early Railway Development in China and the UK;67
9.2;2 Further Development of the Railways;68
9.3;3 Speed-up and High Speed Rail in the UK;69
9.4;4 Channel Tunnel and Its Link to London;71
9.5;5 Development of High Speed in Europe;73
9.6;6 Safety of High Speed Trains;74
9.7;7 Railway Research in the UK;76
9.8;8 Development of High Speed in China;78
9.9;9 Future High Speed Rail in the UK;79
9.10;10 Concluding Remarks;79
9.11;Appendix;80
9.12;Brief Bibliography;83
9.13;References;83
10;4 Comparison of the Technologies of the Japanese Shinkansen and Chinese High-Speed Railways;86
10.1;1 Brief History of Japanese and Chinese High-Speed Railways;87
10.2;2 Comparison of HSRs in Japan and China by Basic Transportation Figures;87
10.3;3 Comparison of Technological Achievements of HSRs in Japan and in China;88
10.3.1;3.1 Outline;88
10.3.1.1;3.1.1 Original Technologies of Japan and of China;88
10.3.1.2;3.1.2 Original Design of Japan’s Cars: Development of Lightweight Bogies with Stable Operation at High Speed (Sone 2014);89
10.3.1.3;3.1.3 Original Design of Japan’s Cars: Distributed Traction System with All Axles Motored;90
10.3.1.4;3.1.4 Chinese Design Concept;91
10.3.2;3.2 Comparison of Achievements of the HSR in Japan and in China Relating to Subsystems Used;92
10.3.2.1;3.2.1 Power Feeding System;92
10.3.2.2;3.2.2 Electromagnetic Compatibility;92
10.3.2.3;3.2.3 Phase Balancing Measures After Introduction of Regenerative Trains;93
10.3.2.4;3.2.4 Result of Lightweight Design of Cars;94
10.3.2.5;3.2.5 Cab Signal ATC;94
10.3.2.6;3.2.6 Poor Tracks and Infrastructure in Japan;95
10.4;4 Other Developed Countries’ HSR Technologies (Akiyama 2014);95
10.4.1;4.1 Britain;95
10.4.2;4.2 France and Germany;96
10.4.3;4.3 French Versus Japanese Technologies;96
10.4.4;4.4 French Versus Japanese Technologies in Recent Years;97
10.5;5 Technologies of Chinese Origin;98
10.6;6 Further Discussion on Technologies of Japan and China;100
10.6.1;6.1 Optimum Motored to Non-motored Cars (MT) Ratio and Brake System Design;100
10.6.2;6.2 Safety and Reliable Design and Operation;101
10.6.3;6.3 Design of Automatic Train Protection (ATP);101
10.7;7 Peculiarity of Japanese and Chinese Railways;102
10.8;8 Important Relationship to Be Kept Between Japanese and Chinese HSRs;102
10.9;9 Conclusions;103
10.10;Appendix;103
10.11;References;105
11;Aerodynamics of High-Speed Rail;107
12;5 Unsteady Simulation for a High-Speed Train Entering a Tunnel;108
12.1;1 Introduction;108
12.2;2 Fundamental Flow Equations;109
12.3;3 Computational Domain and Mesh Generation;110
12.4;4 Results;111
12.4.1;4.1 Description of the Wave Propagation Process;111
12.4.2;4.2 Pressure Difference Amplitudes on the Train Surface and the Tunnel Wall;113
12.4.3;4.3 Microwave;114
12.4.4;4.4 Aerodynamic Forces of the Train;116
12.5;5 Conclusions;119
12.6;Acknowledgements;119
12.7;References;119
13;6 Aerodynamic Modeling and Stability Analysis of a High-Speed Train Under Strong Rain and Crosswind Conditions;121
13.1;1 Introduction;121
13.2;2 Numerical Simulation;123
13.2.1;2.1 Computational Model;123
13.2.2;2.2 Computational Domain;123
13.2.3;2.3 Computational Mesh;124
13.2.4;2.4 Boundary Conditions;125
13.3;3 Problem Description;125
13.4;4 Results and Discussion;126
13.4.1;4.1 Pressure Distribution on the Train Surface;126
13.4.2;4.2 Aerodynamic Force of Train Under Strong Rain and Crosswind Conditions;126
13.4.3;4.3 Aerodynamic Moment of Train Under Strong Rain and Crosswind Conditions;129
13.4.4;4.4 Stability Analysis of the Train Under Rain and Crosswind Conditions;129
13.5;5 Conclusions;132
13.6;References;132
14;7 Numerical Study on the Aerodynamic Performance and Safe Running of High-Speed Trains in Sandstorms;135
14.1;1 Introduction;135
14.2;2 Mathematical Model and Numerical Simulation;137
14.2.1;2.1 Eulerian–Eulerian Multiphase Model;137
14.2.2;2.2 Computational Simulation;138
14.2.3;2.3 Validation of the Numerical Model;139
14.2.3.1;2.3.1 Verification of Eulerian Two-Phase Model;139
14.2.3.2;2.3.2 Verification of the Train Model;139
14.3;3 Results and Discussion;141
14.3.1;3.1 Influence of Sand on the Drag Force;141
14.3.2;3.2 Influence of Sand on the Lift Force;142
14.3.3;3.3 Influence of Sand on the Side Force;143
14.3.4;3.4 Influence of Sand on the Overturning Moment;143
14.3.5;3.5 Influence of Sand on the Train’s Safety and Recommended Speed Limit Under Crosswind;144
14.4;4 Conclusions;146
14.5;References;147
15;8 Influence of Aerodynamic Braking on the Pressure Wave of a Crossing High-Speed Train;149
15.1;1 Introduction;149
15.2;2 Model of a High-Speed Train and Grids Partition;150
15.2.1;2.1 Geometric Model of a High-Speed Train with Aerodynamic Braking;150
15.2.2;2.2 Calculation Area and the Mesh Partition;150
15.2.2.1;2.2.1 Selected Section for the Calculation Area;150
15.2.2.2;2.2.2 Mesh Partition of a Single Train;152
15.2.2.3;2.2.3 Sliding Mesh;152
15.3;3 Numerical Simulation of the Aerodynamic Status of Crossing High-Speed Trains;153
15.3.1;3.1 Characteristic of the Air Flow Field;154
15.3.2;3.2 Influence of Aerodynamic Braking on the Crossing Train;154
15.4;4 Conclusions;157
15.5;References;158
16;9 A Numerical Approach to the Interaction Between Airflow and a High-Speed Train Subjected to Crosswind;159
16.1;1 Introduction;159
16.2;2 Governing Equations;161
16.2.1;2.1 Equations of Fluid Dynamics;161
16.2.2;2.2 Equations of Vehicle-Track Coupling Dynamics;161
16.3;3 Numerical Approach to the Interaction;162
16.3.1;3.1 Vehicle-Track Dynamics Solution Technique;162
16.3.2;3.2 Dynamic Mesh Technique;163
16.3.3;3.3 Solution Strategies;163
16.4;4 Computational Model and Domain;164
16.5;5 Numerical Simulation;167
16.5.1;5.1 Aerodynamics and Displacements;167
16.5.1.1;5.1.1 Head Coach;167
16.5.1.2;5.1.2 Middle Coach;170
16.5.1.3;5.1.3 Tail Coach;172
16.5.2;5.2 Dynamic Performances of Vehicle Track;174
16.6;6 Conclusions;177
16.7;References;177
17;10 Multi-objective Optimization Design Method of the High-Speed Train Head;180
17.1;1 Introduction;180
17.2;2 Basic Concepts and Optimization Process;183
17.2.1;2.1 Basic Concepts of Multi-objective Optimization;183
17.2.2;2.2 Multi-objective Optimization Process;184
17.3;3 3D Parametric Model of the Train;184
17.3.1;3.1 Entity Model of the Left Half of the Train Head;185
17.3.2;3.2 Parametric Model of the High-Speed Train;186
17.3.3;3.3 Optimization Design Variables;186
17.4;4 Aerodynamic Model;188
17.5;5 Vehicle System Dynamics Model;189
17.6;6 Multi-objective Optimization Algorithm;190
17.7;7 Numerical Simulation;191
17.8;8 Conclusion;194
17.9;References;195
18;11 Study on the Safety of Operating High-Speed Railway Vehicles Subjected to Crosswinds;198
18.1;1 Introduction;198
18.2;2 Dynamic Model of Coupled Vehicle–Track System in Crosswinds;200
18.2.1;2.1 Vehicle Model;201
18.2.2;2.2 Track Model;203
18.2.3;2.3 Wheel-Rail Contact Model;206
18.2.4;2.4 Vehicle–Track Excitation Model;207
18.2.5;2.5 Aerodynamic Forces on the Vehicle;208
18.3;3 Methods for Safety Assessment of Crosswinds;210
18.4;4 Simulation of High-Speed Vehicle Dynamic Behavior Under Crosswinds;211
18.4.1;4.1 Vehicle Dynamic Responses to Crosswind;212
18.4.2;4.2 Effect of Crosswind Attack Angle;216
18.4.3;4.3 Combined Effects of Vehicle Speed and Crosswind Speed;216
18.5;5 Evaluation of Operational Safety Area for High-Speed Vehicles Under Crosswind Excitations;219
18.6;6 Conclusion;221
18.7;References;223
19;High-Speed Rail Infrastructure and Material Innovations;225
20;12 A 2.5D Finite Element Approach for Predicting Ground Vibrations Generated by Vertical Track Irregularities;226
20.1;1 Introduction;226
20.2;2 2.5D Finite Element Method;228
20.3;3 Mathematical Model of Train Running on Track with Harmonic Irregularities;230
20.4;4 Numerical Results and Discussion;232
20.4.1;4.1 Effect of Amplitude of Track Irregularities on Dynamic Responses;233
20.4.2;4.2 Effect of Wavelength of Track Irregularities on Dynamic Responses;240
20.5;5 Conclusions;241
20.6;References;242
21;13 Smart Elasto-Magneto-Electric (EME) Sensors for Stress Monitoring of Steel Structures in Railway Infrastructures;244
21.1;1 Introduction;244
21.2;2 Tested Steel Bars;246
21.3;3 Magneto-Electric Sensing Unit;247
21.3.1;3.1 Working Principle;247
21.3.2;3.2 Performance Tests;248
21.4;4 Smart EME Sensor and Tension Tests;251
21.5;5 Conclusions;253
21.6;References;254
22;14 Recent Research on the Track-Subgrade of High-Speed Railways;256
22.1;1 Background;256
22.2;2 Dynamic Response of Track-Subgrade;257
22.3;3 Post-construction Settlement of the Track-Subgrade;259
22.4;4 Long-Term Serviceability of Subgrade;260
22.5;5 Summary;260
22.6;References;261
23;15 Microstructure and Properties of Cold Drawing Cu-2.5% Fe-0.2% Cr and Cu-6% Fe Alloys;263
23.1;1 Introduction;263
23.2;2 Materials and Methods;265
23.3;3 Results;265
23.4;4 Discussion;268
23.5;5 Conclusions;270
23.6;References;270
24;16 Microstructure and Hardness of Cu-12% Fe Composite at Different Drawing Strains;275
24.1;1 Introduction;275
24.2;2 Materials and Methods;276
24.3;3 Results;277
24.3.1;3.1 Microstructure;277
24.3.2;3.2 Structure Orientation;279
24.3.3;3.3 Vickers Hardness;281
24.4;4 Discussion;281
24.4.1;4.1 Microstructure Evolution;281
24.4.2;4.2 Hardness;284
24.5;5 Conclusions;285
24.6;References;286
25;High-Speed Rail Wheel/Rail Dynamics;289
26;17 Modeling of High-Speed Wheel–Rail Rolling Contact on a Corrugated Rail and Corrugation Development;290
26.1;1 Introduction;290
26.2;2 Model Descriptions;293
26.2.1;2.1 FE Model;293
26.2.1.1;2.1.1 An Overview;293
26.2.1.2;2.1.2 A Typical Process of Numerical Simulation and the Explicit Time Integration;295
26.2.1.3;2.1.3 Traction and Creepage;296
26.2.1.4;2.1.4 Material Model;298
26.2.2;2.2 Frictional Work and Wear Prediction;298
26.2.3;2.3 Corrugation Model;299
26.3;3 Results of Smooth Contact Surface;300
26.3.1;3.1 Dynamic Relaxation;300
26.3.2;3.2 Longitudinal and Vertical Forces;301
26.3.3;3.3 Contact Stresses and Frictional Work;302
26.4;4 Corrugation;304
26.4.1;4.1 Measurements on a High-Speed Line;304
26.4.2;4.2 Transient Wheel–Rail Interaction;305
26.4.3;4.3 Different Wavelengths and Depths;308
26.4.4;4.4 Different Traction Coefficients;309
26.4.5;4.5 Different Rolling Speeds;311
26.4.6;4.6 Comparison with the Multi-body Approach;312
26.5;5 Discussion;313
26.6;6 Summary and Conclusions;315
26.7;References;316
27;18 A 3D Model for Coupling Dynamics Analysis of High-Speed Train/Track System;320
27.1;1 Introduction;320
27.2;2 3D Modeling of High-Speed Train/Track System;323
27.2.1;2.1 Modeling Vehicle Subsystem;323
27.2.2;2.2 Modeling the Inter-vehicle Connection Subsystem;328
27.2.3;2.3 Modeling the Track Subsystem;330
27.2.4;2.4 Modeling the Wheel/Rail Contact Subsystem;333
27.2.5;2.5 Train/Track Excitation Model;335
27.2.6;2.6 Initial and Boundary Conditions of the Coupled Train/Track System;336
27.3;3 Verification of the Train/Track Model;337
27.4;4 Comparison of Dynamic Performances Obtained by TTM and VTM;339
27.4.1;4.1 Comparison of Vibration Frequency Components;339
27.4.2;4.2 Comparison of Ride Comfort;342
27.4.3;4.3 Comparison of Curving Performance;344
27.5;5 Conclusions;347
27.6;References;348
28;19 Effect of the First Two Wheelset Bending Modes on Wheel–Rail Contact Behavior;351
28.1;1 Introduction;351
28.2;2 Vehicle–Track Coupling Dynamic System;353
28.2.1;2.1 Flexible Wheelset Model;354
28.2.2;2.2 Wheel–Rail Contact Model;364
28.3;3 Results and Discussion;368
28.4;4 Conclusions;371
28.5;Appendix A;372
28.6;Appendix B;372
28.7;References;380
29;20 Influence of Wheel Polygonal Wear on Interior Noise of High-Speed Trains;382
29.1;1 Introduction;383
29.2;2 Measurement of Wheel Polygon and Vehicle Noise and Vibration;384
29.2.1;2.1 Test Overview;384
29.2.2;2.2 Characteristics of Wheel Diameter Difference and Polygon;385
29.2.3;2.3 Effect of Re-profiling on Vehicle Noise and Vibration;387
29.3;3 Model of Polygonal Wheel for Wheel/Rail Rolling Noise Calculation;388
29.3.1;3.1 Characteristics of Two Wheels with the Same Diameter Difference;389
29.3.2;3.2 Theory of Wheel/Rail Rolling Noise Prediction;390
29.3.3;3.3 Wheel/Rail Rolling Noise Prediction Results;394
29.4;4 Prediction Model of Interior Noise of Coach;396
29.4.1;4.1 Theory of the Hybrid FE-SEA;397
29.4.2;4.2 Interior Noise Simulation Model of the Coach End;398
29.5;5 Influence of Different Wheel Polygonal Wear on Noise;400
29.5.1;5.1 Characteristics of Wheel Polygon;400
29.5.2;5.2 Effect of Different Order of Wheel Polygon on Noise;401
29.5.3;5.3 Effect of Different Roughness Levels of Wheel Polygon on Noise;403
29.5.4;5.4 Effect of Different Phases of Wheel Polygon on Noise;405
29.6;6 Conclusions;408
29.7;Acknowledgements;409
29.8;References;409
30;21 Investigation into External Noise of a High-Speed Train at Different Speeds;411
30.1;1 Introduction;411
30.2;2 Noise Source Identification of High-Speed Train;413
30.2.1;2.1 Facility and Its Principle;413
30.2.2;2.2 Measurement of High-Speed Train Noise Sources;415
30.2.3;2.3 Frequency Characteristics of Main Noise Sources;419
30.2.4;2.4 Characteristics of SEL at Different Speeds;422
30.3;3 Pass-by Noise Magnitude and Its Characteristics;427
30.4;4 External Noise Behaviors as a Function of Speed;430
30.5;5 Conclusions;431
30.6;References;432
31;22 Effect of Softening of Cement Asphalt Mortar on Vehicle Operation Safety and Track Dynamics;434
31.1;1 Introduction;435
31.2;2 Coupling Dynamic Model of Vehicle and CRTS-I Slab Track;436
31.2.1;2.1 Dynamic Model of Vehicle Subsystem;436
31.2.2;2.2 Dynamic Model of Slab Track Subsystem;438
31.2.3;2.3 Model of Wheel-Rail Interaction in Rolling Contact;438
31.2.4;2.4 CAM Softening in the Vehicle-Track Coupling Dynamic Model;439
31.2.5;2.5 Evaluation Criteria of Railway Vehicle Derailment;439
31.3;3 Track/Subgrade Coupling Model;440
31.3.1;3.1 Finite Difference Model of Slab Track and Subgrade;440
31.3.2;3.2 CAM Softening in the Track Finite Difference Model;441
31.3.3;3.3 Contact Model of Track;441
31.3.4;3.4 Loading on the Track-Subgrade Finite Difference Model;443
31.4;4 Results and Discussion;443
31.4.1;4.1 Effect of CAM Softening on High-Speed Vehicle Operation Safety;444
31.4.2;4.2 Effect of CAM Softening on Track Displacement;444
31.4.3;4.3 Effect of CAM Softening on Slab Stress and Track Interface Failure;447
31.5;5 Conclusions;449
31.6;References;450
32;Advances in Traction Power Supply and Transportation Organization Technologies;452
33;23 A Two-Layer Optimization Model for High-Speed Railway Line Planning;453
33.1;1 Introduction;454
33.2;2 Decision Support Mechanism (DSM) for Line Planning;455
33.2.1;2.1 Stop-Schedule Optimization;456
33.2.2;2.2 Passenger Assignment Optimization;456
33.3;3 Modeling of Line Planning;457
33.3.1;3.1 Input Data;457
33.3.2;3.2 Model of the Stop-Schedule Optimization;458
33.3.2.1;3.2.1 Decision Variables;458
33.3.2.2;3.2.2 Objective Functions;458
33.3.2.3;3.2.3 Constraints;459
33.3.2.4;3.2.4 Coding and Initialization;460
33.3.2.5;3.2.5 Crossover Operator;461
33.3.2.6;3.2.6 Mutation Operator;461
33.3.2.7;3.2.7 Reproduction Operator;462
33.3.2.8;3.2.8 Termination;462
33.3.3;3.3 Model of the Passenger Assignment;462
33.3.3.1;3.3.1 Objective Functions;462
33.3.3.2;3.3.2 Constraints;463
33.4;4 Case Studies;463
33.4.1;4.1 Taiwan HSR;463
33.4.2;4.2 Beijing-Shanghai HSR;465
33.5;5 Conclusions and Future Work;468
33.6;References;469
34;24 Dynamic Performance of a Pantograph–Catenary System with the Consideration of the Appearance Characteristics of Contact Surfaces;472
34.1;1 Introduction;472
34.2;2 Model of the Pantograph–Catenary System;473
34.2.1;2.1 Catenary Model;473
34.2.2;2.2 Pantograph Model;474
34.2.3;2.3 Pantograph–Catenary System Model;475
34.3;3 Results of the Dynamic Performance;476
34.4;4 Validation by a Field Test;479
34.5;5 Analysis of the Influence of Contact Wire Irregularity;481
34.6;6 Analysis of the Influence of Double Pantographs;483
34.7;7 Conclusions;484
34.8;References;484
35;25 Design and Reliability, Availability, Maintainability, and Safety Analysis of a High Availability Quadruple Vital Computer System;486
35.1;1 Introduction;486
35.2;2 System Design;489
35.3;3 Hardware and Embedded Safe Operation System (ES-OS);491
35.4;4 Safety Bus and Deterministic Communication Schedule;494
35.5;5 System Modeling;496
35.6;6 Evaluation;498
35.6.1;6.1 Reliability;498
35.6.2;6.2 Availability;498
35.6.3;6.3 Maintainability;498
35.6.4;6.4 Safety;500
35.7;7 Conclusions;500
35.8;References;500
36;26 Design and Analysis of the Hybrid Excitation Rail Eddy Brake System of High-Speed Trains;502
36.1;1 Introduction;502
36.2;2 Theory of Eddy Brake System;503
36.2.1;2.1 Lift System of the Brake System;505
36.2.1.1;2.1.1 Status of Relief;505
36.2.1.2;2.1.2 Status of Brake;505
36.2.2;2.2 Brake Exciting System;506
36.2.3;2.3 Main Parameters of the Brake System;507
36.3;3 Simulation;508
36.3.1;3.1 Creating Finite Element Method (FEM) Model;508
36.3.2;3.2 Effects of Gap;510
36.3.2.1;3.2.1 When There is no Exciting;510
36.3.2.2;3.2.2 When There is Exciting;513
36.3.3;3.3 Effects of Electricity;514
36.4;4 Optimization;515
36.5;5 Conclusions;517
36.6;References;518
37;27 Simulation Software for CRH2 and CRH3 Traction Driver Systems Based on SIMULINK and VC;520
37.1;1 Introduction;520
37.2;2 Simulation Model;521
37.3;3 Developed Simulation Software;523
37.4;4 Simulation Results;524
37.4.1;4.1 Traction and Brake Performance of CRH2;524
37.4.2;4.2 Speed Regulation Performance Simulation;526
37.4.3;4.3 Transient Performance of Fault Condition;526
37.5;5 Conclusions;527
37.6;References;528
38;28 Electromagnetic Environment Around a High-Speed Railway Using Analytical Technique;531
38.1;1 Introduction;532
38.2;2 Magnetic Field Formulae;534
38.2.1;2.1 Geometry of Railway System;534
38.2.2;2.2 Integrated Formulae;534
38.2.3;2.3 Trapped Surface Wave;536
38.2.4;2.4 Lateral Wave;537
38.2.5;2.5 Final Formulae for the Magnetic Field;538
38.3;3 Computation Results and Comparison;538
38.4;4 Conclusions;541
38.5;Appendix;541
38.6;References;542
39;29 Optimal Condition-Based Maintenance Strategy Under Periodic Inspections for Traction Motor Insulations;545
39.1;1 Introduction;546
39.2;2 Problem Statement and Description;547
39.3;3 Mathematical Model Development;550
39.3.1;3.1 Failure Rate of Insulations Under Shocks;550
39.3.2;3.2 State Transition Probability During a Single Inspection Interval;551
39.3.3;3.3 Mathematical Models for the Variables in the Optimization Model;553
39.3.3.1;3.3.1 Expected Time at State 0 within a Cycle;553
39.3.3.2;3.3.2 Expected Time at State 1 in a Cycle;554
39.3.3.3;3.3.3 Probability of PM and CM in a Cycle;554
39.3.3.4;3.3.4 Expected Number of Inspections in a Cycle;555
39.4;4 Special Case;555
39.4.1;4.1 State Transition Probability Within One Inspection Interval;556
39.4.2;4.2 Mathematical Models for the Variables in Optimization Model;556
39.4.3;4.3 Probability of PM, CM, and the Expected Number of Inspections in One Cycle;557
39.5;5 Numerical Investigation and Discussion;557
39.6;6 Conclusions;559
39.7;References;560
40;30 A Combined Simulation of High-Speed Train Permanent Magnet Traction System Using Dynamic Reluctance Mesh Model and Simulink;564
40.1;1 Introduction;565
40.2;2 Dynamic Reluctance Mesh Model;565
40.2.1;2.1 Principle of Basic Reluctance Mesh (RM) Model;565
40.2.2;2.2 Dynamic Reluctance Mesh Model;567
40.2.3;2.3 DRM Model of the PM Traction Motor;567
40.2.4;2.4 Simulation Results of DRM Model;568
40.3;3 Combined Model Using DRM and Simulink;570
40.3.1;3.1 Dynamic Modeling and Interface;571
40.3.2;3.2 Vector Control System;572
40.3.3;3.3 Combine DRM and Simulink Model;573
40.4;4 Simulation Results;574
40.4.1;4.1 Constant Parameter PMSM Traction System Simulink Models;574
40.4.2;4.2 Combined Simulation Using DRM and Simulink;574
40.5;5 Conclusions;577
40.6;References;578
41;31 3D Thermal Analysis of a Permanent Magnet Motor with Cooling Fans;580
41.1;1 Introduction;581
41.2;2 AFPM Machine;582
41.3;3 CFD Modeling;582
41.4;4 Analysis of CFD Results;588
41.5;5 Conclusions;588
41.6;References;589
42;Index;591




