Fan / Suhir | Moisture Sensitivity of Plastic Packages of IC Devices | E-Book | www2.sack.de
E-Book

Fan / Suhir Moisture Sensitivity of Plastic Packages of IC Devices


1. Auflage 2010
ISBN: 978-1-4419-5719-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 558 Seiten

Reihe: Micro- and Opto-Electronic Materials, Structures, and Systems

ISBN: 978-1-4419-5719-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Moisture Sensitivity of Plastic Packages of IC Devices provides information on the state-of-the-art techniques and methodologies related to moisture issues in plastic packages. The most updated, in-depth and systematic technical and theoretical approaches are addressed in the book. Numerous industrial applications are provided, along with the results of the most recent research and development efforts, including, but not limited to: thorough exploration of moisture's effects based on lectures and tutorials by the authors, consistent focus on solution-based approaches and methodologies for improved reliability in plastic packaging, emerging theories and cutting-edge industiral applications presented by the leading professionals in the field. Moisture plays a key role in the reliability of plastic packages of IC devices, and moisture-induced failures have become an increasing concern with the development of advanced IC devices. This second volume in the Micro- and Opto-Electronic Materials, Structures, and Systems series is a must-read for researchers and engineers alike.

Fan / Suhir Moisture Sensitivity of Plastic Packages of IC Devices jetzt bestellen!

Weitere Infos & Material


1;Foreword;5
2;Preface;7
3;Series Preface;10
4;Contents;11
5;Contributors;13
6;1 Fundamental Characteristics of Moisture Transport, Diffusion, and the Moisture-Induced Damages in Polymeric Materials in Electronic Packaging;16
6.1;1.1 Introduction;16
6.2;1.2 Fickian and Non-Fickian Moisture Diffusion;18
6.3;1.3 Saturated Moisture Concentration;25
6.4;1.4 Water Sorption and Moisture Sorption;27
6.5;1.5 Characterization of Pore Size, Porosity, and Free Volume;28
6.6;1.6 Hygroscopic Swelling Measurement;31
6.7;1.7 Effect of Moisture on Fracture Toughness/Adhesion Strength;32
6.7.1;1.7.1 In Situ Fracture Toughness Measurement;32
6.7.2;1.7.2 Die Shear Test;34
6.8;1.8 Discussions;36
6.8.1;1.8.1 State of Moisture in Polymers;36
6.8.2;1.8.2 Total Moisture Volume Versus Volume Expansion Due to Hygroscopic Swelling;37
6.8.3;1.8.3 Effect of Fillers;38
6.8.4;1.8.4 Duration of the Moisture Diffusion;39
6.9;1.9 Concluding Remarks;41
6.10;References;41
7;2 Mechanism of Moisture Diffusion, Hygroscopic Swelling, and Adhesion Degradation in Epoxy Molding Compounds;44
7.1;2.1 Introduction;44
7.2;2.2 Moisture Diffusion in Plastic Encapsulated Microcircuits;46
7.2.1;2.2.1 Moisture Diffusion in a Package vs. in Bulk EMC;48
7.2.2;2.2.2 Interfacial Moisture Diffusion;48
7.2.3;2.2.3 Moisture Accommodation at Interfaces;50
7.2.4;2.2.4 Fickian Moisture Diffusion;51
7.2.5;2.2.5 Non-Fickian Dual-Stage Moisture Diffusion;52
7.3;2.3 Moisture Desorption;57
7.4;2.4 Second Run of Absorption (Re-sorption);63
7.5;2.5 Hygroscopic Swelling;65
7.5.1;2.5.1 Characterization of CHS by Warpage Measurement of Bi-material Beams;67
7.5.2;2.5.2 Characterization of CHS by TMA/TGA;69
7.5.3;2.5.3 Characterization of CHS by Archimedes Principle;71
7.6;2.6 Moisture-Induced Adhesion Degradation;73
7.7;2.7 Conclusion;80
7.8;References;81
8;3 Real-Time Characterization of Moisture Absorptionand Desorption;85
8.1;3.1 Introduction;85
8.2;3.2 Background;87
8.3;3.3 Experimental Data;89
8.3.1;3.3.1 Material;89
8.3.2;3.3.2 Instrumentation;90
8.4;3.4 Moisture AbsorptionDesorption;91
8.4.1;3.4.1 Moisture Diffusivity;91
8.4.2;3.4.2 Saturated Moisture Content;92
8.4.3;3.4.3 Temperature Dependence of Diffusivity;95
8.5;3.5 Comparison with Literature Data;96
8.6;3.6 Application Moisture Diffusion and Vapor Pressure Modeling for Ultrathin Stacked Chip Scale Packages;97
8.7;3.7 Conclusions;101
8.8;References;102
9;4 Modeling of Moisture Diffusion and Whole-Field Vapor Pressure in Plastic Packages of IC Devices;104
9.1;4.1 Introduction;104
9.2;4.2 Moisture Diffusion Modeling Normalization Method;105
9.2.1;4.2.1 Theory;105
9.2.2;4.2.2 Thermal-Moisture Analogy;108
9.2.3;4.2.3 Example -- Application to a PBGA Package;109
9.3;4.3 Moisture Desorption Modeling Direct Moisture Concentration (DCA) Approach;110
9.3.1;4.3.1 Theory;110
9.3.2;4.3.2 Numerical Implementation;112
9.3.3;4.3.3 Verification;113
9.3.4;4.3.4 Analysis of Moisture Desorption for a Bi-material Model;115
9.3.5;4.3.5 Example -- Application to a PBGA Package;117
9.4;4.4 Whole-Field Vapor Pressure Model;119
9.4.1;4.4.1 Theory;119
9.4.2;4.4.2 Numerical Implementation;120
9.4.3;4.4.3 Analysis of Vapor Pressure Development During Reflow for a Bi-material Model;121
9.4.4;4.4.4 Whole-Field Vapor Pressure Modeling for FCBGA and PBGA Packages;122
9.5;4.5 Summary;123
9.6;Appendix: Table of the Saturated Water Vapor Density and Vapor Pressure at Different Temperatures ;124
9.7;References;124
10;5 Characterization of Hygroscopic Deformations by Moir Interferometry;126
10.1;5.1 Introduction;126
10.2;5.2 Moir Interferometry;127
10.2.1;5.2.1 Real-Time Observation and Testing Apparatus;128
10.2.2;5.2.2 Tuning and Measurement;128
10.3;5.3 Experimental Procedure Using Moir Interferometry;129
10.3.1;5.3.1 Initial Preparation;129
10.3.2;5.3.2 Specimen Grating Replication;130
10.3.3;5.3.3 Moisture Content Measurement;131
10.3.4;5.3.4 Measurement of Hygroscopic Deformation;131
10.4;5.4 Hygroscopic Swelling Measurement of Mold Compounds;132
10.4.1;5.4.1 CHS of Mold Compounds;133
10.4.2;5.4.2 Comparison Between Hygroscopic and Thermal Deformations;136
10.4.3;5.4.3 Effect of Grating on Sorption and Desorption Characteristics of the Mold Compound;136
10.4.4;5.4.4 CHS Measurement Accuracy;137
10.5;5.5 Analysis of Plastic Quad Flat Package;138
10.5.1;5.5.1 Discussion;141
10.6;5.6 Summary;142
10.7;References;142
11;6 Characterization of Interfacial Hydrothermal Strength of Sandwiched Assembly Using Photomechanics Measurement Techniques;144
11.1;6.1 Introduction;144
11.2;6.2 Interfacial Fracture Mechanics Approach;146
11.3;6.3 Photomechanics Measurement Techniques;148
11.3.1;6.3.1 Moiré Interferometry;148
11.3.2;6.3.2 Digital Image Correlation (DIC);149
11.4;6.4 Experimental Procedures for Interfacial Hydrothermal Strength Characterization;150
11.4.1;6.4.1 Specimen Preparation;150
11.4.2;6.4.2 Measurement of Thermal and Hygrothermal Deformation;151
11.4.3;6.4.3 Determination of Critical Interfacial Fracture Toughness;152
11.5;6.5 Interfacial Hydrothermal Strength of Sandwiched Assembly;152
11.5.1;6.5.1 Hygrothermal Displacement of the Assembly;152
11.5.2;6.5.2 Thermal Deformation of the Assembly;154
11.5.3;6.5.3 Fracture Toughness of the Assembly Under Hygrothermal Aging;157
11.5.4;6.5.4 Critical Interfacial Fracture Toughness of the Assembly;159
11.5.5;6.5.5 Reliability of Silicon/Underfill Interface of the Assembly;160
11.6;6.6 Summary;161
11.7;References;162
12;7 Hygroscopic Swelling of Polymeric Materials in Electronic Packaging: Characterization and Analysis;165
12.1;7.1 Introduction;165
12.2;7.2 Hygroscopic Swelling Characterization Using Point-Measurement Methods;166
12.3;7.3 Effect of Non-uniform Moisture Distribution in Determining CHS;169
12.3.1;7.3.1 Moisture Distribution;169
12.3.2;7.3.2 Hygroscopic Swelling-Induced Deformation;170
12.3.3;7.3.3 Averaged Approaches;171
12.3.3.1;7.3.3.1 Averaged Approach I;171
12.3.3.2;7.3.3.2 Averaged Approach II;172
12.3.4;7.3.4 Results;173
12.4;7.4 Effect of Hygroscopic Stress in Determining CHS;178
12.4.1;7.4.1 Problem Description;179
12.4.2;7.4.2 Theory -- Sequentially Coupled Field Transient Analysis;179
12.4.3;7.4.3 Results;181
12.5;7.5 General Guidelines for Characterizing Hygroscopic Swelling Properties;184
12.6;7.6 Coupled Nonlinear ThermalHygroscopic Stress Modeling;185
12.7;7.7 Conclusions;189
12.8;References;190
13;8 Modeling of Moisture Diffusion and Moisture-Induced Stresses in Semiconductor and MEMS Packages;192
13.1;8.1 Introduction;192
13.2;8.2 Technical Background;193
13.2.1;8.2.1 Moisture Diffusion;193
13.2.2;8.2.2 Analytical Solutions of Diffusion Equation;195
13.2.3;8.2.3 Hygroscopic Swelling;197
13.3;8.3 Modeling of Moisture Diffusion;197
13.3.1;8.3.1 Thermal--Moisture Analogy;198
13.3.1.1;8.3.1.1 Single Material Problems;198
13.3.1.2;8.3.1.2 Interfacial Discontinuity in Multi-material Problems;199
13.3.1.3;8.3.1.3 Normalized Analogy;200
13.3.1.4;8.3.1.4 Advanced Analogy;200
13.3.1.5;8.3.1.5 Validation of Analogies;202
13.3.2;8.3.2 Moisture Transport into/out of a Cavity: Effective-Volume Scheme;204
13.4;8.4 Modeling of Hygroscopic Swelling-Induced Stresses;208
13.4.1;8.4.1 Modeling Strategy for Hygro-thermo-mechanical Stress Analysis;208
13.4.2;8.4.2 Implementation Using ABAQUS;210
13.4.3;8.4.3 Verification of the Modeling Scheme;211
13.4.4;8.4.4 Discussion: Implementation Using ANSYS;213
13.5;8.5 Application to a Polymer Bi-material Structure;214
13.5.1;8.5.1 Bi-material Specimen;214
13.5.2;8.5.2 Experimental Procedure;216
13.5.3;8.5.3 Simulation Procedure;216
13.5.4;8.5.4 Validation of the FE Model;217
13.5.5;A.1 FDM Schemes for Mass Diffusion Equations;219
13.5.5.1;A.1.1 Anisothermal 1-D Problem;219
13.5.5.2;A.1.2 Isothermal Axisymmetric Problem;220
13.5.6;A.2 ANSYS Input Templates for the Advance Analogy;221
13.5.6.1;A.2.1 Transient Case ;221
13.5.6.2;A.2.2 Anisothermal Case ;222
13.5.7;A.3 Templates for the Combined Analysis;224
13.5.7.1;A.3.1 Program to Change the Record Key;224
13.5.7.2;A.3.2 Example Program for UEXPAN;226
13.5.7.3;A.3.3 ANSYS Input Template for Hygro-Thermal Loading;227
13.6;References;227
14;9 Methodology for Integrated Vapor Pressure, Hygroswelling, and Thermo-mechanical Stress Modeling of IC Packages;231
14.1;9.1 Introduction;231
14.2;9.2 Moisture Diffusion Modeling;232
14.2.1;9.2.1 Modeling Methodology;232
14.2.2;9.2.2 Modeling Results;235
14.3;9.3 Thermal Modeling;235
14.3.1;9.3.1 Modeling Methodology;235
14.3.2;9.3.2 Modeling Results;236
14.4;9.4 Vapor Pressure Modeling [11];237
14.4.1;9.4.1 Modeling Methodology;237
14.4.2;9.4.2 Modeling Results;239
14.5;9.5 Hygro-mechanical Modeling;240
14.6;9.6 Thermo-mechanical Modeling;242
14.7;9.7 Integrated Stress Modeling;242
14.7.1;9.7.1 Modeling Methodology;242
14.7.2;9.7.2 Modeling Results;243
14.8;9.8 Interfacial Fracture Mechanics Modeling;244
14.8.1;9.8.1 Modeling Methodology;244
14.8.2;9.8.2 Modeling Results;246
14.9;9.9 Integrated Stress Modeling for a Pressure Cooker Test;247
14.9.1;9.9.1 Modeling Methodology;247
14.9.2;9.9.2 Moisture Diffusion;248
14.9.3;9.9.3 Hygro-mechanical Stress During PCT;249
14.9.4;9.9.4 Combined Hygro-mechanical Stress and Thermo-mechanical Stress During PCT;250
14.10;9.10 Conclusions;251
14.11;References;252
15;10 Failure Criterion for Moisture-Sensitive Plastic Packages of Integrated Circuit (IC) Devices: Application and Extension of the Theory of Thin Plates of Large Deflections;254
15.1;10.1 Introduction;254
15.2;10.2 Analysis;256
15.2.1;10.2.1 Constitutive Equations;256
15.2.2;10.2.2 Boundary Conditions;259
15.2.3;10.2.3 Stresses;260
15.2.4;10.2.4 Special Cases;261
15.2.5;10.2.5 Initial Curvature and Initial Stresses;262
15.2.6;10.2.6 Elongated Package;266
15.2.7;10.2.7 von Mises Stress;276
15.2.8;10.2.8 Simplified Approach;277
15.3;10.3 Numerical Examples;277
15.4;10.4 Calculated Data;279
15.5;10.5 Conclusions;279
15.6;Appendix. Clamped Plate of Finite Aspect Ratio Experiencing Large Deflections;280
15.7;References;285
16;11 Continuum Theory in Moisture-Induced Failures of Encapsulated IC Devices;288
16.1;11.1 Introduction;288
16.2;11.2 Instability of Single Void Growth;292
16.2.1;11.2.1 Elasto-Plastic Model;292
16.2.2;11.2.2 Hyperelastic Model;295
16.3;11.3 Void Behavior at the Interface;296
16.4;11.4 Extension of the Gurson Model and Void Evolution Rate;298
16.5;11.5 A Rigid-Plastic Model for Package Bulging Analysis;300
16.6;11.6 Governing Equations for a Deforming Polymer with Moisture Considering Phase Transition;301
16.7;11.7 Concluding Remarks;304
16.8;References;305
17;12 Mechanism-Based Modeling of Thermal- and Moisture-Induced Failure of IC Devices;309
17.1;12.1 Introduction;309
17.2;12.2 Vapor Pressure Modeling in Rate-Independent ElasticPlastic Solids;311
17.3;12.3 Vapor Pressure and Residual Stress Effects;312
17.3.1;12.3.1 Adhesive Failure Mechanisms;313
17.3.2;12.3.2 Interfacial Toughness;318
17.3.2.1;12.3.2.1 Parallel Delamination Along Interfaces of Adhesive Joints;318
17.3.2.2;12.3.2.2 Interfacial Toughness Under Mixed Mode Loading;320
17.3.3;12.3.3 Full-Field Analysis of IC Packages;323
17.4;12.4 Pressure Sensitivity and Plastic Dilatancy Contributions;325
17.4.1;12.4.1 Macroscopic Response on Void Growth and Interaction;327
17.4.2;12.4.2 Extended Damage Zone Formation;329
17.5;12.5 Porous Solids with Pressure-Sensitivity and Non-linear Viscosity;331
17.5.1;12.5.1 Pressure Sensitivity, Dilatancy, and Softening--Rehardening;331
17.5.2;12.5.2 Nonlinear Viscosity;334
17.6;References;336
18;13 New Method for Equivalent Acceleration of IPC/JEDEC Moisture Sensitivity Levels;340
18.1;13.1 Introduction;340
18.2;13.2 Moisture Sensitivity Test Classifications Joint IPC/JEDEC Industry Standard J-STD-020D;341
18.3;13.3 Local Moisture Concentration Equivalency-Based Method [ 2 ];344
18.3.1;13.3.1 Theory;344
18.3.2;13.3.2 Experimental Validations;348
18.3.3;13.3.3 Discussions;351
18.4;13.4 New Method for Equivalent Acceleration of IPC/JEDEC Moisture Sensitivity Test;353
18.4.1;13.4.1 Methodology;353
18.4.2;13.4.2 Finite Element Modeling;354
18.4.3;13.4.3 Experimental Validation;357
18.5;13.5 Conclusions;363
18.6;References;364
19;14 Moisture Sensitivity Level (MSL) Capability of Plastic-Encapsulated Packages;366
19.1;14.1 Introduction;366
19.2;14.2 Experimental Procedures and Setup;369
19.2.1;14.2.1 Mold Compound Chemistry/Properties;370
19.2.2;14.2.2 Tensile Pull Sample Description/Instron Machine Setup;370
19.2.3;14.2.3 Moisture Absorption Samples;374
19.2.4;14.2.4 Moisture Sensitivity Testing;374
19.2.5;14.2.5 QFN Package Description;374
19.2.6;14.2.6 D 2 Pak Package Description;375
19.3;14.3 Experimental Data and Analysis;376
19.3.1;14.3.1 First Series of Experiments;376
19.3.1.1;14.3.1.1 Pull Tab Adhesion Data;376
19.3.1.2;14.3.1.2 Moisture Absorption;377
19.3.1.3;14.3.1.3 Correlation of Adhesion and Moisture Absorption with Package MSL Performance;378
19.3.1.4;14.3.1.4 Experimental Conclusions for Mold Compound Chemistry Experiments;381
19.3.2;14.3.2 Second Series of Experiments;382
19.3.2.1;14.3.2.1 Pull Tab Adhesion;382
19.3.2.2;14.3.2.2 Moisture Sensitivity Testing (Level 1at 260C);382
19.3.2.3;14.3.2.3 Experimental Conclusions for the Second Series of Experiments;385
19.3.3;14.3.3 Additional Experimental Studies;386
19.3.3.1;14.3.3.1 Effect of Mold Cap Thickness of QFN Packages;386
19.3.3.2;14.3.3.2 Effect of Mold Compound Compaction;386
19.4;14.4 Conclusions;392
19.5;References;393
20;15 Hygrothermal Delamination Analysis of Quad Flat No-Lead (QFN) Packages;396
20.1;15.1 Introduction;396
20.2;15.2 Manufacture of Dummy QFN Packages;397
20.3;15.3 Mechanical Tests for Interfacial Strength;398
20.4;15.4 Moisture Sensitivity Tests of Dummy QFN Packages;400
20.5;15.5 Finite Element Model;401
20.6;15.6 Thermo-mechanical Stress Analysis;401
20.7;15.7 Hygro-mechanical Stress Analysis;405
20.8;15.8 Integrated Stress Analysis;409
20.9;15.9 Discussion;414
20.10;15.10 Concluding Remarks;415
20.11;References;416
21;16 Industrial Applications of Moisture-Related ReliabilityProblems;417
21.1;16.1 Introduction;417
21.2;16.2 Application 1: Wire Bond Reliability of a BGA Package Subjected to HAST;419
21.2.1;16.2.1 Description of the Carrier;420
21.2.2;16.2.2 Material Characterization;421
21.2.3;16.2.3 Finite Element Modeling;422
21.2.4;16.2.4 Results;423
21.3;16.3 Application 2: Moisture-Related Structural Similarity Rules;424
21.3.1;16.3.1 Description of the Carrier;425
21.3.2;16.3.2 Material Characterization;426
21.3.3;16.3.3 Finite Element Modeling;427
21.3.4;16.3.4 Results;428
21.4;16.4 Application 3: Moisture Sensitivity of System-in-Packages;430
21.4.1;16.4.1 Carrier Description;432
21.4.2;16.4.2 Finite Element Modeling;433
21.4.3;16.4.3 Results;434
21.5;16.5 Conclusions;439
21.6;References;439
22;17 Underfill Selection Against Moisture in Flip ChipBGA Packages;441
22.1;17.1 Introduction;441
22.2;17.2 Design of Experiments;442
22.2.1;17.2.1 Test Vehicles;442
22.2.2;17.2.2 ''No-flux'' Assembly Process;443
22.2.3;17.2.3 Plasma Grafting Surface Treatment;444
22.2.4;17.2.4 Underfill Voiding;444
22.3;17.3 Material Characterization;445
22.3.1;17.3.1 Thermo-Mechanical Properties;445
22.3.2;17.3.2 Moisture Diffusivity and Saturated Moisture Concentration;446
22.3.3;17.3.3 Pull/Shear Adhesion Test and Results;447
22.4;17.4 Moisture/Reflow Sensitivity Test Results and Failure Analysis;452
22.4.1;17.4.1 Effect of the Underfill Material Selection;452
22.4.2;17.4.2 Failure Mode Analysis;453
22.4.3;17.4.3 Effect of Flux Residue;454
22.4.4;17.4.4 Effect of Plasma Grafting Treatment;454
22.4.5;17.4.5 Effect of Overmolding;455
22.4.6;17.4.6 Effect of Voids in Underfill;457
22.5;17.5 Finite Element Modeling;457
22.5.1;17.5.1 Vapor Pressure Modeling;457
22.5.2;17.5.2 Thermal Stress Analysis on Overmolding Effect;458
22.6;17.6 Integrated Analysis of Moisture-Induced Delamination at Reflow;461
22.7;17.7 Conclusions;463
22.8;References;464
23;18 Moisture Sensitivity Investigations of 3D Stacked-Die Chip-Scale Packages (SCSPs);467
23.1;18.1 Introduction;467
23.2;18.2 Experimental;468
23.2.1;18.2.1 Test Vehicle Description;468
23.2.2;18.2.2 Reflow Profile Setting;468
23.2.3;18.2.3 Substrate Design;469
23.2.4;18.2.4 Die-Attach Film Selection;470
23.2.5;18.2.5 Material Properties of Die-Attach Films;470
23.2.6;18.2.6 Moisture/Reflow Sensitivity Test Procedures;471
23.3;18.3 Test Results and Failure Analysis;472
23.3.1;18.3.1 Effect of Reflow Profiles;472
23.3.2;18.3.2 Effect of Substrate Design;473
23.3.3;18.3.3 Evaluation of Different Die-Attach Films;474
23.4;18.4 Finite Element Analysis;476
23.4.1;18.4.1 Effect of Substrate Thickness;478
23.4.2;18.4.2 Effect of Reflow Profile;481
23.5;18.5 Summary;483
23.6;References;483
24;19 Automated Simulation System of Moisture Diffusion and Hygrothermal Stress for Microelectronic Packaging;485
24.1;19.1 Introduction;485
24.2;19.2 Basic Formulations;486
24.2.1;19.2.1 Moisture Diffusion and Hygroswelling;486
24.2.2;19.2.2 Vapor Pressure Model;487
24.2.3;19.2.3 Equivalent Coefficient of Thermal Expansion (CTE);488
24.3;19.3 Development of Automated Simulation System for Moisture Diffusion and Hygrothermal Stress;489
24.3.1;19.3.1 ANSYS Workbench Overview;489
24.3.2;19.3.2 General Package Automated Simulation Platform;490
24.3.3;19.3.3 Structure of AutoSim in Moisture-Related Analysis;494
24.3.3.1;19.3.3.1 Modules of Moisture-Related Automated Simulation System;495
24.4;19.4 Application of AutoSim;497
24.4.1;19.4.1 Moisture Diffusion Analysis for an MLP Package;497
24.4.1.1;19.4.1.1 Moisture Diffusion;497
24.4.1.2;19.4.1.2 Vapor Pressure Simulation;498
24.4.1.3;19.4.1.3 Integrated Stress Modeling;498
24.4.2;19.4.2 Material Parameter Examination;501
24.5;19.5 Conclusion;504
24.6;References;506
25;20 Moisture-Driven Electromigrative Degradation in Microelectronic Packages;508
25.1;20.1 Introduction;508
25.2;20.2 Electrochemical Migration (ECM);508
25.3;20.3 ECM Mechanism;509
25.4;20.4 ECM: Contributing Factors;512
25.4.1;20.4.1 Moisture (Humidity) Factor;512
25.4.2;20.4.2 Voltage Factor;513
25.4.3;20.4.3 Temperature Factor;513
25.4.4;20.4.4 Material Factor;514
25.4.5;20.4.5 Effect of Ionic Contaminants: Complexation and Metal-Ion Liberation;515
25.4.6;20.4.6 Effect of Contaminants on Water Uptake;517
25.5;20.5 Mechanism of Ion Transport in ECM;518
25.6;20.6 Dendritic Morphology;522
25.7;20.7 Summary;525
25.8;References;526
26;21 Interfacial Moisture Diffusion: Molecular Dynamics Simulation and Experimental Evaluation;528
26.1;21.1 Introduction;528
26.2;21.2 Molecular Dynamics Simulation of Moisture Diffusion;529
26.2.1;21.2.1 Molecular Dynamics Simulation;529
26.2.2;21.2.2 Molecular Dynamics Models of Moisture Diffusion;531
26.2.3;21.2.3 Effect of Interfacial Adhesion of Copper/Epoxy Under Different Moisture Levels;535
26.3;21.3 Experimental Methods on Detecting Interfacial Moisture Diffusion;537
26.3.1;21.3.1 Background;537
26.3.2;21.3.2 Interfacial Moisture Diffusion Measurement Example;540
26.3.2.1;21.3.2.1 Sample Preparation;540
26.3.2.2;21.3.2.2 FTIR--MIR Measurement;540
26.3.2.3;21.3.2.3 FTIR--MIR Signal Calibration;542
26.3.2.4;21.3.2.4 Results of FTIR--MIR Measurement;542
26.3.3;21.3.3 Effect of Copper Oxide Content Under Interfacial Moisture Diffusion on Adhesion;544
26.3.3.1;21.3.3.1 Work of Adhesion;544
26.3.3.2;21.3.3.2 X-Ray Photoelectron Spectroscopy;546
26.3.3.3;21.3.3.3 Moisture and Copper Oxide-Related Adhesion;547
26.4;21.4 Summary;550
26.5;References;551
27;About the Editors;555
28;Subject Index;558



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.