Buch, Englisch, 355 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 557 g
Buch, Englisch, 355 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 557 g
Reihe: Unsupervised and Semi-Supervised Learning
ISBN: 978-3-030-23878-0
Verlag: Springer International Publishing
- Reports advances on classic problems in mixture modeling such as parameter estimation, model selection, and feature selection;
- Present theoretical and practical developments in mixture-based modeling and their importance in different applications;
- Discusses perspectives and challenging future works related tomixture modeling.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Signalverarbeitung
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Mathematik | Informatik Mathematik Stochastik Stochastische Prozesse
Weitere Infos & Material
A Gaussian Mixture Model Approach To Classifying Response Types.- Interactive Generation Of Calligraphic Trajectories From Gaussian Mixtures.- Mixture models for the analysis, edition, and synthesis of continuous time series.- Multivariate Bounded Asymmetric Gaussian Mixture Model.- Online Recognition Via A Finite Mixture Of Multivariate Generalized Gaussian Distributions.- L2 Normalized Data Clustering Through the Dirichlet Process Mixture Model of Von Mises Distributions with Localized Feature Selection.- Deriving Probabilistic SVM Kernels From Exponential Family Approximations to Multivariate Distributions for Count Data.- Toward an Efficient Computation of Log-likelihood Functions in Statistical Inference: Overdispersed Count Data Clustering.- A Frequentist Inference Method Based On Finite Bivariate And Multivariate Beta Mixture Models.- Finite Inverted Beta-Liouville Mixture Models with Variational Component Splitting.- Online Variational Learning for Medical Image Data Clustering.- Color Image Segmentation using Semi-Bounded Finite Mixture Models by Incorporating Mean Templates.- Medical Image Segmentation Based on Spatially Constrained Inverted Beta-Liouville Mixture Models.- Flexible Statistical Learning Model For Unsupervised Image Modeling And Segmentation.