Falkowski / Knoll | Evolution of Primary Producers in the Sea | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 456 Seiten

Falkowski / Knoll Evolution of Primary Producers in the Sea


1. Auflage 2011
ISBN: 978-0-08-055051-0
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 456 Seiten

ISBN: 978-0-08-055051-0
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Evolution of Primary Producers in the Sea reference examines how photosynthesis evolved on Earth and how phytoplankton evolved through time - ultimately to permit the evolution of complex life, including human beings. The first of its kind, this book provides thorough coverage of key topics, with contributions by leading experts in biophysics, evolutionary biology, micropaleontology, marine ecology, and biogeochemistry.This exciting new book is of interest not only to students and researchers in marine science, but also to evolutionary biologists and ecologists interested in understanding the origins and diversification of life. Evolution of Primary Producers in the Sea offers these students and researchers an understanding of the molecular evolution, phylogeny, fossil record, and environmental processes that collectively permits us to comprehend the rise of phytoplankton and their impact on Earth's ecology and biogeochemistry. It is certain to become the first and best word on this exhilarating topic. - Discusses the evolution of phytoplankton in the world's oceans as the first living organisms and the first and basic producers in the earths food chain - Includes the latest developments in the evolution and ecology of marine phytoplankton specifically with additional information on marine ecosystems and biogeochemical cycles - The only book to consider of the evolution of phytoplankton and its role in molecular evolution, biogeochemistry, paleontology, and oceanographic aspects - Written at a level suitable for related reading use in courses on the Evolution of the Biosphere, Ecological and Biological oceanography and marine biology, and Biodiversity

Falkowski / Knoll Evolution of Primary Producers in the Sea jetzt bestellen!

Weitere Infos & Material


1;Cover;1
2;Contents;6
3;List of Contributors;12
4;Preface;14
5;Chapter 1: An Introduction to Primary Producers in the Sea: Who They Are, What They Do, and When They Evolved;15
5.1;I. What Is Primary Production?;16
5.2;II. How Is Photosynthesis Distributed in the Oceans?;17
5.3;III. What Is the Evolutionary History of Primary Production in the Oceans?;18
5.4;IV. Concluding Comments;19
5.5;References;19
6;Chapter 2: Oceanic Photochemistry and Evolution of Elements and Cofactors in the Early Stages of the Evolution of Life;21
6.1;I. Energy Requirements for Life;22
6.2;II. Prebiotic Photochemistry-UV and Oceanic Photochemistry;22
6.3;III. Evolution of Cofactors;24
6.3.1;A. Metals;24
6.3.2;B. Cofactors;26
6.4;IV. Conclusions;31
6.5;Acknowledgments;31
6.6;References;31
7;Chapter 3: The Evolutionary Transition from Anoxygenic to Oxygenic Photosynthesis;35
7.1;I. Earliest Evidence for Photosynthesis and the Nature of the Earliest Phototrophs;36
7.2;II. Structural Conservation of the Core Structure of Photosynthetic Reaction Centers During Evolution;39
7.3;III. The Structural and Mechanistic Differences Between the Anoxygenic Reaction Centers of Type II and Photosystem II of Oxygenic Organisms;42
7.4;IV. Evolutionary Scenarios for How the Transition from Anoxygenic to Oxygenic Photosynthesis May Have Taken Place;43
7.5;V. Conclusions and Prospects for the Future;47
7.6;Acknowledgments;47
7.7;References;47
8;Chapter 4: Evolution of Light-Harvesting Antennas in an Oxygen World;51
8.1;I. How Cyanobacteria Changed the World;52
8.2;II. Light-Harvesting Antennas and the Evolution of the Algae;53
8.3;III. Phycobilisomes;54
8.4;IV. The ISIA/PCB Family;56
8.5;V. About Chlorophylls;58
8.6;VI. The LHC Superfamily;59
8.6.1;A. The Light-Harvesting Antennas;59
8.6.2;B. The Stress-Response Connection;61
8.6.3;C. Prokaryotic Ancestry of the LHC Superfamily;62
8.7;VII. Overview;63
8.8;Acknowledgments;63
8.9;References;64
9;Chapter 5: Eukaryote and Mitochondrial Origins: Two Sides of the Same Coin and Too Much Ado About Oxygen;69
9.1;I. Cell Evolution With and Without Endosymbiosis;69
9.2;II. The Standard Model of How and Why the Mitochondrion Become Established;71
9.3;III. There are at Least 12 Substantial Problems with the Standard Model;72
9.4;IV. The Same 12 Issues from the Standpoint of an Alternative Theory;78
9.5;V. Criticism and Defense of the Hydrogen Hypothesis;80
9.6;VI. Intermezzo;82
9.7;VII. Conclusions;83
9.8;Acknowledgments;84
9.9;References;84
10;Chapter 6: Photosynthesis and the Eukaryote Tree of Life;89
10.1;I. The Eukaryotes;90
10.2;II. Overview of the Tree;91
10.2.1;A. Opisthokonts;92
10.2.2;B. Amoebozoa;94
10.2.3;C. Rhizaria (Formerly Cercozoa);95
10.2.4;D. Archaeplastida;97
10.2.5;E. Chromalveolates;98
10.2.6;F. Excavates;100
10.2.7;G. Incertae Sedis;102
10.3;III. The Eukaryote Root;102
10.4;IV. Oxygenic Photosynthesis Across the Eukaryote Tree of Life;103
10.4.1;A. Opisthokonts;107
10.4.2;B. Amoebozoa;107
10.4.3;C. Rhizaria;108
10.4.4;D. Archaeplastida;109
10.4.5;E. Chromalveolates;109
10.4.6;F. Excavates and Incertae Sedis;111
10.5;V. Conclusions;112
10.6;References;113
11;Chapter 7: Plastid Endosymbiosis: Sources and Timing of the Major Events;123
11.1;I. General Introduction to Plastid Endosymbiosis;123
11.2;II. Primary Plastid Origin and Plantae Monophyly;128
11.2.1;A. Generating the Eukaryotic Phylogeny;128
11.2.2;B. Molecular Clock Analyses;131
11.2.3;C. Conclusions of Plantae Phylogenetic and Molecular Clock Analyses;134
11.3;III. Secondary Plastid Endosymbiosis;135
11.4;IV. Tertiary Plastid Endosymbiosis;138
11.5;V. Summary;141
11.6;References;142
12;Chapter 8: The Geological Succession of Primary Producers in the Oceans;147
12.1;I. Records of Primary Producers in Ancient Oceans;148
12.1.1;A. Microfossils;148
12.1.2;B. Molecular Biomarkers;148
12.2;II. The Rise of Modern Phytoplankton;156
12.2.1;A. Fossils and Phylogeny;156
12.2.2;B. Biomarkers and the Rise of Modern Phytoplankton;157
12.2.3;C. Summary of the Rise of Modern Phytoplankton;160
12.3;III. Paleozoic Primary Production;160
12.3.1;A. Microfossils;160
12.3.2;B. Paleozoic Molecular Biomarkers;161
12.3.3;C. Paleozoic Summary;162
12.4;IV. Proterozoic Primary Production;162
12.4.1;A. Prokaryotic Fossils;162
12.4.2;B. Eukaryotic Fossils;163
12.4.3;C. Proterozoic Molecular Biomarkers;165
12.4.4;D. Summary of the Proterozoic Record;166
12.5;V. Archean Oceans;166
12.6;VI. Conclusions;169
12.6.1;A. Directions for Continuing Research;170
12.7;Acknowledgments;171
12.8;References;171
13;Chapter 9: Life in Triassic Oceans: Links Between Planktonic and Benthic Recovery and Radiation;179
13.1;I. Benthos;183
13.1.1;A. Benthic Wastelands of the Early Triassic;183
13.1.2;B. Middle Triassic Recovery of Benthic Ecosystems;184
13.1.3;C. Late Triassic Benthic Boom: Supersize Me;187
13.2;II. Plankton;188
13.2.1;A. Early Triassic Disaster Species;188
13.2.2;B. Middle Triassic Oxygen and Evolution;189
13.2.3;C. Late Triassic Rise of Modern Phytoplankton;191
13.3;III. Benthic-Planktonic Coupling in Triassic Oceans;194
13.3.1;A. Common Driver;194
13.3.2;B. Plankton Control;195
13.3.3;C. Feedback from the Benthos;195
13.3.4;D. Assistance from the Plankton;196
13.4;IV. Conclusions;196
13.5;Acknowledgments;197
13.6;References;197
14;Chapter 10: The Origin and Evolution of Dinoflagellates;205
14.1;I. Paleontological Data;207
14.2;II. Phylogeny of Dinoflagellates;208
14.2.1;A. Sources of Information;208
14.2.2;B. The Phylogeny;210
14.2.3;C. Reconciling Molecular and Morphological Phylogenies;211
14.3;III. The Plastids of Dinoflagellates;212
14.4;IV. Dinoflagellates in the Plankton;214
14.5;References;216
15;Chapter 11: The Origin and Evolution of the Diatoms: Their Adaptation to a Planktonic Existence;221
15.1;I. The Hallmark of the Diatoms: The Silica Frustule;224
15.1.1;A. Frustule Shape and Ornamentation and Their Bearings on Diatom Taxonomy;224
15.1.2;B. Frustule Construction;225
15.2;II. Diatom Phylogeny;225
15.2.1;A. The Heterokont Ancestry of the Diatoms;227
15.2.2;B. Diatom Phylogenies;228
15.2.3;C. The Life Cycle and Its Bearings on Phylogeny;230
15.3;III. The Origin of the Frustule;233
15.3.1;A. The Origin of Silica Sequestering and Metabolism;233
15.3.2;B. The Evolution of the Frustule in Vegetative Cells;234
15.4;IV. The Fossil Record;235
15.4.1;A. The Early Fossil Record of the Heterokontophytes;235
15.4.2;B. The Fossil Record of the Diatoms;236
15.5;V. The Success of the Diatoms in the Plankton;241
15.5.1;A. The Paleo-Environmental Settings and the Fates of the Various Phytoplankton Lineages;241
15.5.2;B. Why Did Chromists Win Over Prasinophytes or Red Microalgae?;243
15.5.3;C. Why Did Heterokontophytes Win Over Haptophytes and Dinoflagellates?;245
15.5.4;D. Why Did Diatoms Win Over Other Heterokontophytes?;247
15.6;VI. Cryptic Diversity in Planktonic Diatoms and Its Bearing on Evolution;251
15.7;VII. The Dawning Future of Diatom Research: Genomics;253
15.8;Acknowledgments;255
15.9;References;255
16;Chapter 12: Origin and Evolution of Coccolithophores: From Coastal Hunters to Oceanic Farmers;265
16.1;I. Coccolithophores and the Biosphere;265
16.2;II. What Is a Coccolithophore?;267
16.2.1;A. Coccoliths and Coccolithogenesis;269
16.3;III. The Haptophytes;270
16.4;IV. Tools and Biases in the Reconstruction of Coccolithophore Evolution;273
16.5;V. The Evolution of Haptophytes up to the Invention of Coccoliths: From Coastal Hunters to Oceanic Farmers?;275
16.5.1;A. The Origin of the Haptophytes and Their Trophic Status;275
16.5.2;B. Paleozoic Haptophytes and the Ancestors of the Coccolithophores;279
16.6;VI. The Origin of Calcification in Haptophytes: When, How Many Times, and Why?;281
16.6.1;A. Genetic Novelties?;282
16.6.2;B. Multiple Origins for Coccolithogenesis?;282
16.6.3;C. Environmental Forcing on the Origin of Haptophyte Calcification;286
16.6.4;D. Why Were Coccoliths Invented?;286
16.7;VII. Macroevolution Over the Last 220 Million Years;289
16.7.1;A. Forces Shaping the Evolution of Coccolithophores and Coccolithogenesis;289
16.7.2;B. Broad Patterns of Morphological Diversity;290
16.7.3;C. Oligotrophy and Water Chemistry;290
16.7.4;D. Changes in Morphostructural Strategies;292
16.8;VIII. The Future of Coccolithophores;293
16.9;Acknowledgments;294
16.10;References;295
17;Chapter 13: The Origin and Early Evolution of Green Plants;301
17.1;I. Green Plants Defined;302
17.2;II. Green Plant Body Plans;305
17.2.1;A. Green Plant Life Histories;307
17.3;III. The Core Structure of the Green Plant Phylogenetic Tree;308
17.3.1;A. The Archegoniate Line;308
17.3.2;B. The Chlorophyte Line;310
17.3.3;C. The Prasinophytes;312
17.4;IV. Difficulties in the Green Plant Phylogenetic Tree;315
17.4.1;A. The Identity of the Lineage Ancestral to Green Plants;315
17.4.2;B. The Early Diversification of the SeaweedŽ Orders;316
17.5;V. Green Plants in the Modern Marine Environment;317
17.6;VI. Conclusions;318
17.7;Acknowledgments;318
17.8;References;318
18;Chapter 14: Armor: Why, When, and How;325
18.1;I. Why Armor;326
18.1.1;A. History of The Concept ArmorŽ Applied to Plankton;326
18.1.2;B. Why Should Protists and the Pelagial Be Different?;329
18.1.3;C. Form and Function in Sessile and Drifting Photoautotrophs;330
18.1.4;D. Attacking Organisms/Attacking Tools;332
18.1.5;E. Ingestors or Predators;335
18.2;II. When;337
18.3;III. How;338
18.3.1;A. Material;339
18.3.2;B. The Geometry;340
18.3.3;C. Lightweight Constructions of Phytoplankton Armor;341
18.3.4;D. Spines and Large Size;342
18.3.5;E. Other Functional Explanations;343
18.4;IV. Conclusions;343
18.5;Acknowledgments;344
18.6;References;344
19;Chapter 15: Does Phytoplankton Cell Size Matter? The Evolution of Modern Marine Food Webs;347
19.1;I. Size Matters: From Physiological Rates to Ecological and Evolutionary Patterns;348
19.1.1;A. Size Scaling of Physiological Rates;348
19.1.2;B. Size–Abundance Relationship;349
19.1.3;C. Size–Diversity Relationship;349
19.1.4;D. Size Matters: Food Web Structure and Function;350
19.2;II. Resource Availability, Primary Production, and Size Structure of Planktonic and Benthic Food Webs;353
19.3;III. Size and the Evolution of Marine Food Webs;354
19.3.1;A. Increase in the Maximum Size of Living Organisms Through Time;354
19.3.2;B. Organism Size Within Lineages Through Time (Cope’s Rule);355
19.3.3;C. Climatically Driven Macroevolutionary Change in Organism Size;355
19.3.4;D. The Evolution of the Modern Marine Food Web;356
19.4;Acknowledgments;359
19.5;References;359
20;Chapter 16: Resource Competition and the Ecological Success of Phytoplankton;365
20.1;I. Resource Acquisition and Measures of Competitive Ability;366
20.1.1;A. Nutrients;366
20.1.2;B. Light;367
20.2;II. The Role of Spatial and Temporal Heterogeneity in Resource Competition in Phytoplankton;369
20.2.1;A. Heterogeneity in Nutrient Distribution;369
20.2.2;B. Heterogeneity in Light Distribution;371
20.2.3;C. Vertical Heterogeneity in Phytoplankton Distribution;372
20.3;III. Physiological Trade-Offs;373
20.3.1;A. Nutrient Utilization Trade-Offs;374
20.3.2;B. Light Utilization Trade-Offs;374
20.3.3;C. Trade-Offs in Nutrient Competitive Ability Versus Light Competitive Ability;374
20.3.4;D. Trade-Offs in Growth Rate Versus Competitive Ability;375
20.3.5;E. Trade-Offs in Grazing Resistance Versus Competitive Ability;375
20.4;IV. Ecological Strategies of Resource Utilization in Major Functional Groups;375
20.4.1;A. Diatoms;376
20.4.2;B. Coccolithophores;377
20.4.3;C. Green Algae;377
20.4.4;D. Dinoflagellates and the Role of Mixotrophy;379
20.4.5;E. The Role of Size;380
20.4.6;F. Clonal Differences in Resource Utilization;380
20.5;V. Future Phytoplankton Communities;380
20.6;VI. Challenges and Future Directions;381
20.6.1;A. Dynamic Regulation of Resource Utilization and Competitive Ability;381
20.6.2;B. Resource Interaction;382
20.6.3;C. Evolution of Competitive Ability;382
20.6.4;D. Phylogenetic Relationships;383
20.6.5;E. Concluding Remarks;383
20.7;Acknowledgments;384
20.8;References;384
21;Chapter 17: Biological and Geochemical Forcings to Phanerozoic Change in Seawater, Atmosphere, and Carbonate Precipitate Composition;391
21.1;I. Continental Weathering Fluxes and CO2;392
21.2;II. The Global Biogeochemical Cycles of Calcium, Magnesium, Carbon, Sulfur, Silica, and Phosphorus;396
21.2.1;A. Calcium-Magnesium-Silicate-Carbonate-CO2 Cycle;396
21.2.2;B. Organic Carbon and Phosphorus Subcycles;397
21.2.3;C. Sulfur Subcycle;398
21.3;III. Oceanic Sinks;398
21.3.1;A. The Major Sink Processes;398
21.3.2;B. Sink Trends Through Time;401
21.4;IV. Some Trends in Carbonate Rock Features;406
21.5;V. Atmosphere and Seawater Composition;407
21.6;VI. Discussion and Conclusions;411
21.7;Acknowledgments;414
21.8;References;414
22;Chapter 18: Geochemical and Biological Consequences of Phytoplankton Evolution;419
22.1;I. Introduction;419
22.1.1;A. The Two Carbon Cycles;420
22.1.2;B. The Great Oxidation EventŽ and the Wilson Cycle;421
22.2;II. The Role of Phytoplankton in the Geological Carbon Cycle;422
22.2.1;A. Early Phytoplankton Evolution;422
22.2.2;B. The Rise of the Red Lineage;424
22.2.3;C. Biological Overprint of the Geological Carbon Cycle;426
22.3;III. The Phanerozoic Carbon Isotope Record;427
22.4;A. Jurassic to Mid-Miocene 1.1permil delta13Ccarb Increase;429
22.5;B. 2.5permil delta13Ccarb Decrease Since the Mid-Miocene;430
22.6;IV. Feedbacks in Biogeochemical Cycles;431
22.6.1;A. Phytoplankton Community Structure and the Wilson Cycle;431
22.6.2;B. Biological Impact on Global Sedimentation Patterns;433
22.6.3;C. Effects of Carbon Burial on Atmospheric Gases;434
22.7;V. Concluding Remarks;438
22.8;Acknowledgments;439
22.9;References;439
23;Index;445
24;Color Plates;457



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.