Buch, Englisch, 202 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 330 g
Reihe: Modern Birkhäuser Classics
Scalar Linear Systems and Affine Algebraic Geometry
Buch, Englisch, 202 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 330 g
Reihe: Modern Birkhäuser Classics
ISBN: 978-3-319-98025-6
Verlag: Springer International Publishing
The student will find here a clear presentation with an applied flavor, of the core ideas in the algebra-geometric treatment of scalar linear system theory. The author introduces the four representations of a scalar linear system and establishes the major results of a similar theory for multivariable systems appearing in a succeeding volume (Part II: Multivariable Linear Systems and Projective Algebraic Geometry).
Prerequisites are the basics of linear algebra, some simple notions from topologyand the elementary properties of groups, rings, and fields, and a basic course in linear systems. Exercises are an integral part of the treatment and are used where relevant in the main body of the text. The present, softcover reprint is designed to make this classic textbook available to a wider audience.
"This book is a concise development of affine algebraic geometry together with very explicit links to the applications...[and] should address a wide community of readers, among pure and applied mathematicians." —Monatshefte für Mathematik
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Kybernetik, Systemtheorie, Komplexe Systeme
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Regelungstechnik
- Mathematik | Informatik Mathematik Geometrie Algebraische Geometrie
- Mathematik | Informatik Mathematik Mathematik Interdisziplinär Systemtheorie
Weitere Infos & Material
0. Introduction.- 1. Scalar Linear Systems over the Complex Numbers.- 2. Scalar Linear Systems over a Field k.- 3. Factoring Polynomials.- 4. Affine Algebraic Geometry: Algebraic Sets.- 5. Affine Algebraic Geometry: The Hilbert Theorems.- 6. Affine Algebraic Geometry: Irreducibility.- 7. Affine Algebraic Geometry: Regular Functions and Morphisms I.- 8. The Laurent Isomorphism Theorem.- 9. Affine Algebraic Geometry: Regular Functions and Morphisms II.- 10. The State Space: Realizations.- 11. The State Space: Controllability, Observability, Equivalence.- 12. Affine Algebraic Geometry: Products, Graphs and Projections.- 13. Group Actions, Equivalence and Invariants.- 14. The Geometric Quotient Theorem: Introduction.- 15. The Geometric Quotient Theorem: Closed Orbits.- 16. Affine Algebraic Geometry: Dimension.- 17. The Geometric Quotient Theorem: Open on Invariant Sets.- 18. Affine Algebraic Geometry: Fibers of Morphisms.- 19. The Geometric Quotient Theorem: The Ring of Invariants.- 20. Affine Algebraic Geometry: Simple Points.- 21. Feedback and the Pole Placement Theorem.- 22. Affine Algebraic Geometry: Varieties.- 23. Interlude.- Appendix A: Tensor Products.- Appendix B: Actions of Reductive Groups.- Appendix C: Symmetric Functions and Symmetric Group Actions.- Appendix D: Derivations and Separability.- Problems.- References.