E-Book, Englisch, Band 382, 194 Seiten, eBook
Reihe: The Springer International Series in Engineering and Computer Science
E-Book, Englisch, Band 382, 194 Seiten, eBook
Reihe: The Springer International Series in Engineering and Computer Science
ISBN: 978-1-4615-6311-2
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1 Introduction and Motivation.- 1.1 Introduction.- 1.2 Motivation.- 1.3 Objectives of this Work.- 1.4 Organization of the Book.- 2 Review of Hardware-Implementation Techniques.- 2.1 Introduction.- 2.2 Taxonomies of Neural Hardware.- 2.3 Pulse-Coded Implementations.- 2.4 Digital Implementations.- 2.5 Analog Implementations.- 2.6 Comparison of Some Existing Systems.- 2.7 Summary.- 3 Generalized Artificial Neural Networks (GANNs).- 3.1 Introduction.- 3.2 Generalized Artificial Neural Networks (GANNs).- 3.3 Nonlinear MOS-Compatible Semi-Quadratic Synapses.- 3.4 Networks Composed of Semi-Quadratic Synapses.- 3.5 Training Equations.- 3.6 Simulation and Verification of the Approach.- 3.7 Summary.- 4 Foundations: Architecture Design.- 4.1 Introduction.- 4.2 Feedforward Networks with Linear Synapses.- 4.3 Feedforward Networks with Quadratic Synapses.- 4.4 Single-Transistor-Synapse Feedforward Networks.- 4.5 Intelligent MOS Transistors: SyMOS.- 4.6 Performance of Simple SyMOS Networks.- 4.7 Architecture Design in Neural-Network Hardware.- 4.8 The Resource-Finding Exploration.- 4.9 The Current-Source-Inhibited Architecture (CSIA).- 4.10 The Switchable-Sign-Synapse Architecture (SSSA).- 4.11 Digital-Analog Switchable-Sign-Synapse Architecture (DASA).- 4.12 Simulation Results and Comparison.- 4.13 Our Choice of the Way to Go.- 4.14 Summary.- 5 Design, Modeling, and Implementation of a Synapse-MOS Device.- 5.1 Introduction.- 5.2 Design of a SyMOS Device in a CMOS Technology.- 5.3 Implementation.- 5.4 Reliability Issues.- 5.5 Summary.- 6 Synapse-MOS Artificial Neural Networks (SANNs).- 6.1 Introduction.- 6.2 Overview of the Work Leading to Hardware Implementation.- 6.3 Guidelines for Neural-Network Hardware Design.- 6.4 Design and VLSI Implementation.- 6.5 Structure of an SSSA Chip.-6.6 Training Algorithm.- 6.7 Experimental Results.- 6.8 Summary.- 7 Analog Quadratic Neural Networks (AQNNs).- 7.1 Introduction.- 7.2 Background.- 7.3 Design of an “Analog Quadratic Neural Network (AQNN)”.- 7.4 Training.- 7.5 VLSI Implementation.- 7.6 Test Results.- 7.7 Applications.- 7.8 Summary and Future Work.- 8 Conclusion and Recommendations for Future Work.- 8.1 Summary of the Work.- 8.2 Contributions of this work.- 8.3 Recommendations for Future Work.- Appendix A Review of Nonvolatile Semiconductor Memory Devices.- A.1 Background.- A.2 Device Review.- A.2.1 Charge-Trapping Devices.- A.2.2 Floating-Gate Devices.- A.3 Conclusion.- Appendix B Scaling Effects.- B.1 The Effect of the Scaling of CMOS Technology on SANNs.- Appendix C Performance Evaluation.- C.1 Speed.- C.2 Power Consumption.- C.2.1 Detailed Calculation of Power Dissipation.- C.3 Area.- C.4 Overall Performance.- References.