Faigl / Drchal / Olteanu | Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization | Buch | 978-3-031-15443-0 | sack.de

Buch, Englisch, Band 533, 119 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 213 g

Reihe: Lecture Notes in Networks and Systems

Faigl / Drchal / Olteanu

Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization

Dedicated to the Memory of Teuvo Kohonen / Proceedings of the 14th International Workshop, WSOM+ 2022, Prague, Czechia, July 6-7, 2022
1. Auflage 2022
ISBN: 978-3-031-15443-0
Verlag: Springer International Publishing

Dedicated to the Memory of Teuvo Kohonen / Proceedings of the 14th International Workshop, WSOM+ 2022, Prague, Czechia, July 6-7, 2022

Buch, Englisch, Band 533, 119 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 213 g

Reihe: Lecture Notes in Networks and Systems

ISBN: 978-3-031-15443-0
Verlag: Springer International Publishing


In this collection, the reader can ?nd recent advancements in self-organizing maps (SOMs) and learning vector quantization (LVQ), including progressive ideas on exploiting features of parallel computing. The collection is balanced in presenting novel theoretical contributions with applied results in traditional ?elds of SOMs, such as visualization problems and data analysis. Besides, the collection further includes less traditional deployments in trajectory clustering and recent results on exploiting quantum computation. The presented book is worth interest to data analysis and machine learning researchers and practitioners, speci?cally those interested in being updated with current developments in unsupervised learning, data visualization, and self-organization.


Faigl / Drchal / Olteanu Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Sparse weighted K-means for groups of mixed-type variables.- Fast parallel search of Best Matching Units in Self-Organizing Maps.- Neural networks for spatial models.- Machine Learning and Data-Driven Approaches in Spatial Statistics : a case study of housing price estimation.- Modification of the Classification-by-Component Predictor Using Dempster-Shafer-Theory.- Inferring epsilon-nets of Finite Sets in a RKHS.- Steps Forward to Quantum Learning Vector Quantization for Classification Learning on a Theoretical Quantum Computer.- Application of Kohonen Maps in Predicting and Characterizing VAT Fraud in Southern Mozambique.- Visual insights from the latent space of generative models for molecular design.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.