Fadell / Husseini | Geometry and Topology of Configuration Spaces | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 313 Seiten, eBook

Reihe: Springer Monographs in Mathematics

Fadell / Husseini Geometry and Topology of Configuration Spaces


2001
ISBN: 978-3-642-56446-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 313 Seiten, eBook

Reihe: Springer Monographs in Mathematics

ISBN: 978-3-642-56446-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



With applications in mind, this self-contained monograph provides a coherent and thorough treatment of the configuration spaces of Euclidean spaces and spheres, making the subject accessible to researchers and graduates with a minimal background in classical homotopy theory and algebraic topology.

Fadell / Husseini Geometry and Topology of Configuration Spaces jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


I. The Homotopy Theory of Configuration Spaces.- I. Basic Fibrations.- 1 The Projection projk, r : $$\mathbb{F}_k (M) \to \mathbb{F}_r (M)$$.- 2 Relations to Homogeneous Spaces G/H.- 3 The Pull-back to On+1, r.- 4 $$\mathbb{F}_{k - 1,1} (\mathbb{R}^{n + 1} )$$ Restricted to On+1,r.- 5 Historical Remarks.- II. Configuration Space of ?n+1, n < 1.- 1 Filtration of $$\mathbb{F}_k (\mathbb{R}^{n + 1} )$$.- 2 Action of ?k.- 3 The Y-B Relations.- 4 Filtration of $$\pi _* (\mathbb{F}_k (\mathbb{R}^{n + 1} ))$$.- 5 When Are the Canonical Fibrations Trivial?.- 6 Historical Remarks.- III. Configuration Spaces of Sn+1, n < 1.- 1 Filtration of $$\pi _* (\mathbb{F}_{k + 1} (S^{n + 1} )),n > 1$$.- 2 Relation with $$\mathbb{F}_k (\mathbb{R}^{n + 1} )$$.- 3 The Groups ?n,?n+1, (n + 1) Odd.- 4 Symmetry Invariance of ?k+1.- 5 The Y-B Relations, (n + 1) Odd.- 6 The Dirac Class ?k+1.- 7 The Lie Algebra $$\pi _* (\mathbb{F}_r (S^{n + 1} ))$$, n < 1.- 8 Are The Canonical Fibrations Trivial?.- 9 Historical Remarks.- IV. The Two Dimensional Case.- 1 Asphericity of $$\mathbb{F}_k (\mathbb{R}^2 )$$.- 2 Generators for $$\pi _1 (\mathbb{F}_k (\mathbb{R}^2 ),q)$$.- 3 The Action of $$\mathbb{F}_k (\mathbb{R}^2 )$$.- 4 The Y-B Relations.- 5 A Presentation of $$\pi _1 (\mathbb{F}_k (\mathbb{R}^2 ),q)$$.- 6 When Are the Canonical Fibrations Trivial?.- 7 The Group $$\pi _1 (\mathbb{F}_{k + 1} (S^2 ),q^e )$$.- 8 Historical Remarks.- II. Homology and Cohomology of $$(\mathbb{F}_k (M)$$.- V. The Algebra $$H^* (\mathbb{F}_k (M);\mathbb{Z})$$.- 1 The Group $$H^* (\mathbb{F}_k (\mathbb{R}^{n + 1} );\mathbb{Z})$$.- 2 Invariance Under ?k.- 3 The Cohomological Y-B Relations.- 4 The Structure of $$H^* (\mathbb{F}_k (\mathbb{R}^{n + 1} ))$$.- 5 The group $$H^* (\mathbb{F}_{k + 1} (S^{n + 1} ))$$.- 6 $$H^* (\mathbb{F}_{k + 1} (S^{n + 1} ))$$ as an $$H^* (\mathbb{F}_3 (S^{n + 1} ))$$-Module.- 7 The Algebra $$H^* (\mathbb{F}_{k + 1} (S^{n + 1} ))$$, n + 1 Even.- 8 The Algebra $$H^* (\mathbb{F}_{k + 1} (S^{n + 1} ))$$, n + 1 Odd.- 9 Historical Remarks.- VI. Cellular Models.- 1 A Model for $$\mathbb{F}_3 (\mathbb{R}^{n + 1} )$$.- 2 The Twisted-Product Structure on $$H_* (\mathbb{F}_{k - r,r} )$$.- 3 Perturbation and Affine Maps.- 4 An Illustrated Example.- 5 Multispherical Cycles.- 6 Twisted Products in $$H_* (\mathbb{F}_{k + 1} (S^{n + 1} ))$$, n + 1 Odd.- 7 Twisted Products in $$H_* (\mathbb{F}_{k + 1} (S^{n + 1} ))$$, n + 1 Even.- 8 The Cellular Structure of $$\mathbb{F}_k (\mathbb{R}^{n + 1} )$$, n < 1.- 9 The Cellular Structure of $$\mathbb{F}_{k + 1} (S^{n + 1} )$$.- 10 The Cellular Structure of $$\mathbb{F}_k (\mathbb{R}^2 )$$.- 11 The Cellular Structure for $$\mathbb{F}_{k + 1} (S^2 )$$.- 12 Historical Remarks.- VII. Cellular Chain Models.- 1 Cellular Chain Coalgebras.- 2 The Coalgebra of $$\mathbb{F}_k (\mathbb{R}^{n + 1} )$$.- 3 The Coalgebra of $$\mathbb{F}_{k + 1} (S^{n + 1} )$$, (n+1) Odd.- 4 The Coalgebra C*(Y), $$Y\, \simeq \mathbb{F}_{k + 1} (S^{n + 1} )$$, (n + 1) Even.- III. Homology and Cohomology of Loop Spaces.- VIII. The Algebra $$H_* (\Omega \mathbb{F}_k (M)))$$.- 1 The Coalgebra $$H_* (\Omega \mathbb{F}_{k - r,r} )$$.- 2 The Primitives in $$H_* (\Omega \mathbb{F}_{k - r,r} )$$.- 3 The Hopf Algebra $$H_* (\Omega \mathbb{F}_{k - r,r} )$$.- 4 The Algebra $$H_* (\Omega \mathbb{F}_{k + 1} (S^{n + 1} ))$$, (n + 1) Odd.- 5 The Algebra $$H_* (\Omega \mathbb{F}_{k + 1} (S^{n + 1} ))$$, (n + 1) Even.- 6 Historical Remarks.- IX. RPT-Constructions.- 1 RPT-Models for ?(X).- 2 Homotopy Inverse for M(X).- 3 An RPT-Model for ?(X).- 4 An RPT-Model for ??(X).- 5 A Cellular Spectral Sequence.- 6 Historical Remarks.- X. Cellular Chain Algebra Models.- 1 The Adams-Hilton Algebra.- 2 An RPT-model for $$\Omega (\prod\nolimits_{i = 1}^m {S_i } )$$.- 3 $$C_* (M(X_{k - r,r} )),\,X_{k - r,r} \simeq \mathbb{F}_{k - r,r} $$.- 4 $$C_* (M(Y_{k + 1} )),\,Y_{k + 1} \simeq \mathbb{F}_{k + 1} (S^{n + 1} )$$, (n + 1) Odd.- 5 $$C_* (M(Y)),\,Y \simeq \mathbb{F}_{k + 1} (S^{n + 1} )$$, (n + 1) Even.- 6 The Eilenberg-Moore Spectral Sequence of ?(M).- XI. The Serre Spectral Sequence.- 1 The Case of $$\mathbb{F}_{k - r,r} $$, n < 1.- 2 The Case of $$\mathbb{F}_{k + 1} (S^{(n + 1)} )$$, (n + 1) Odd.- 3 The Case of $$\mathbb{F}_{k + 1} (S^{n + 1} )$$, (n + 1) Even.- XII. Computation of H*(?(M)).- 1 Splitting of $$H_* (\Lambda \mathbb{F}_k (\mathbb{R}^{n + 1} );\mathbb{Z}_2 )$$.- 2 Coproducts in $$H_* (\Lambda \mathbb{F}_3 (\mathbb{R}^{n + 1} );\mathbb{Z}_2 )$$.- 3 The Growth of $$H_* (\Lambda (\mathbb{R}_{k - 1}^{n + 1} )$$.- 4 The Growth of $$H_* (\Lambda \mathbb{F}_k (\mathbb{R}^{n + 1} ))$$.- 5 Cup Length in $$H_* (\Lambda (\mathbb{F}_{k - r,r} );\mathbb{Z}_2 )$$.- 6 Historical Remarks.- XIII. ?-Category and Ends.- 1 Relative Category.- 2 Ends in $$W_T^{1,2} (\mathbb{R}^{3(n + 1)} )$$.- 3 ?-category.- 4 Strongly Admissible Sets.- 5 Historical Notes.- XIV. Problems of k-body Type.- 1 Analytic Ends.- 2 The First Example.- 3 The Second Example.- 4 Historical Remarks.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.