Evans / Fürstner | Science of Synthesis: Stereoselective Synthesis Vol. 3 | E-Book | sack.de
E-Book

E-Book, Englisch, 1166 Seiten, PDF, Format (B × H): 170 mm x 240 mm

Reihe: Science of Synthesis

Evans / Fürstner Science of Synthesis: Stereoselective Synthesis Vol. 3

Stereoselective Pericyclic Reactions, Cross Coupling, and C-H and C-X Activation

E-Book, Englisch, 1166 Seiten, PDF, Format (B × H): 170 mm x 240 mm

Reihe: Science of Synthesis

ISBN: 978-3-13-178961-7
Verlag: Thieme
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



The major emphasis here is on enantioselective reactions using asymmetric catalysts. Examples from the total synthesis of various natural and unnatural targets validates the utility of the synthetic methods. Specific topics discussed: cycloaddition, cycloisomerization and sigmatropic rearrangement reactions, allylic and carbonyl functionalization reactions, metal-catalyzed cross-coupling reactions, desymmetrization, fluorination, polymerization and sulfide oxidation reactions.

This volume is part of a 3-volume set: Science of Synthesis Stereoselective Synthesis Workbench Edition

Further information about Stereoselective Synthesis (including sample pages and the table of contents)
Evans / Fürstner Science of Synthesis: Stereoselective Synthesis Vol. 3 jetzt bestellen!

Zielgruppe


Wissenschaftler

Weitere Infos & Material


3.1 [m+n]-Cycloaddition Reactions (Excluding [4+2])
3.2 [4+2]-Cycloaddition Reactions
3.3 [m+n+1]-Carbocyclization Reactions
3.4 [m+n+2]-Carbocyclization Reactions
3.5 Asymmetric Cycloisomerizations
3.6 Ene Reactions
3.7 Sigmatropic Rearrangements
3.8 Electrocyclic Reactions
3.9 Allylic Substitution Reactions
3.10 Isomerizations To Form a Stereogenic Center and Allylic Rearrangements
3.11 Allylic and Benzylic Oxidation
3.12 Mizoroki–Heck Reaction
3.13 C—C Bond Formation by C—H Bond Activation
3.14 Cross Coupling
3.15 Protonation, Alkylation, Arylation, and Vinylation of Enolates
3.16 a-Functionalization of Carbonyl Compounds
3.17 Baeyer–Villiger Reactions
3.18 Ring Opening of Epoxides, Aziridines, and Cyclic Anhydrides
3.19 Acylation of Alcohols and Amines
3.20 Asymmetric Fluorination, Monofluoromethylation, Difluoromethylation, and Trifluoromethylation Reactions
3.21 Stereoselective Polymerization
3.22 Oxidation of Sulfides


Table of Contents
Introduction P. A. Evans Introduction 3.1 [m+n]-Cycloaddition Reactions (Excluding [4+2]) G.-J. Jiang, Y. Wang, and Z.-X. Yu 3.1 [m+n]-Cycloaddition Reactions (Excluding [4+2]) 3.1.1 [2+2]-Cycloaddition Reactions 3.1.1.1 [2+2] Cycloadditions Catalyzed by Transition Metals 3.1.1.1.1 Chiral Titanium Catalysts 3.1.1.1.2 Chiral Copper Catalysts 3.1.1.1.3 Chiral Rhodium Catalysts 3.1.1.1.4 Chiral Iridium Catalysts 3.1.1.2 [2+2] Cycloadditions Catalyzed by Organic Molecules 3.1.1.2.1 Lectka’s Quinine-Derived Catalysts 3.1.1.2.2 Fu’s 4-Pyrrolidinopyridine Catalysts 3.1.1.2.2.1 Asymmetric Staudinger Synthesis of ß-Lactams 3.1.1.2.2.2 [2+2] Cycloadditions of Disubstituted Ketenes with Aldehydes 3.1.1.2.2.3 [2+2] Cycloadditions of Ketenes with Azo Compounds 3.1.1.2.2.4 [2+2] Cycloadditions of Ketenes with Nitroso Compounds 3.1.1.2.3 Corey’s Oxazaborolidine Catalysts 3.1.1.2.4 Ye’s N-Heterocyclic Carbene Catalysts 3.1.1.2.4.1 N-Heterocyclic Carbene Catalyzed Staudinger Reaction of Ketenes 3.1.1.2.4.2 N-Heterocyclic Carbene Catalyzed [2+2] Cycloadditions of Disubstituted Ketenes with 2-Oxoaldehydes 3.1.1.2.4.3 N-Heterocyclic Carbene Catalyzed [2+2] Cycloadditions of Ketenes with Ketones 3.1.1.2.4.4 N-Heterocyclic Carbene Catalyzed [2+2] Cycloadditions of Ketenes with Azodicarboxylates 3.1.2 [3+2]-Cycloaddition Reactions 3.1.2.1 Phosphine-Catalyzed [3+2]-Cycloaddition Reactions of Allenoates with Dienophiles 3.1.2.1.1 Cycloaddition Reactions Catalyzed by P-Chiral 7-Phosphabicyclo[2.2.1]heptane 3.1.2.1.2 Cycloaddition Reactions Catalyzed by Binaphthyl-Derived Phosphines 3.1.2.1.3 Cycloaddition Reactions Catalyzed by Amino Acid Based Phosphines 3.1.2.1.4 Cycloaddition Reactions Catalyzed by Planar-Chiral 2-Phospha[3]ferrocenophanes 3.1.2.1.5 Cycloaddition Reactions Catalyzed by Chiral Thiourea-Containing Phosphines 3.1.2.2 Palladium-Catalyzed Asymmetric [3+2] Trimethylenemethane Cycloaddition Reactions 3.1.3 [4+1]-Cycloaddition Reactions 3.1.3.1 Rhodium- and Platinum-Catalyzed Asymmetric [4+1]-Cycloaddition Reactions of Vinylallenes and Carbon Monoxide 3.1.3.2 Copper-Catalyzed Asymmetric [4+1] Cycloadditions of Enones with Diazo Compounds 3.1.4 [3+3]-Cycloaddition Reactions 3.1.4.1 Chiral Lewis Acid Catalyzed [3+3] Cycloadditions of Nitrones to Doubly Activated Cyclopropanes 3.1.4.2 Palladium-Catalyzed Asymmetric [3+3] Cycloadditions of Trimethylenemethane Derivatives with Nitrones 3.1.5 [4+3]-Cycloaddition Reactions 3.1.5.1 Asymmetric Organocatalysis of [4+3]-Cycloaddition Reactions of Allylic Cations and Dienes 3.1.5.2 Chiral Lewis Acid Catalyzed [4+3] Cycloadditions of Nitrogen-Stabilized Oxyallyl Cations Derived from N-Allenylamides 3.1.5.3 Rhodium-Catalyzed Asymmetric [4+3] Cycloadditions between a-Diazo ß ,?-Unsaturated Esters and Dienes 3.1.5.4 Palladium-Catalyzed [4+3] Cycloadditions of ?-Methylene-d-valerolactones 3.1.5.5 Palladium-Catalyzed [4+3] Intramolecular Cycloadditions of Alkylidenecyclopropanes and Dienes 3.1.6 [5+2]-Cycloaddition Reactions 3.1.6.1 Rhodium-Catalyzed Asymmetric [5+2] Cycloadditions of Vinylcyclopropanes and p-Systems 3.1.7 [6+3]-Cycloaddition Reactions 3.1.7.1 Palladium-Catalyzed Asymmetric [6+3] Cycloaddition of Trimethylenemethane with Tropones 3.2 [4+2]-Cycloaddition Reactions K. Ishihara and A. Sakakura 3.2 [4+2]-Cycloaddition Reactions 3.2.1 Enantioselective Diels–Alder Reactions Catalyzed by Chiral Lewis Acids 3.2.1.1 Enantioselective Catalysis Using Chiral Boron Compounds 3.2.1.1.1 Using a Cationic Oxazaborolidine 3.2.1.1.2 Using Boronic Acid Esters of Chiral 3-(2-Hydroxyphenyl)binaphthols 3.2.1.2 Enantioselective Catalysis Using Chiral Copper(II) Complexes 3.2.1.2.1 Using a Chiral Copper(II)–Bis(4,5-dihydrooxazole) Complex 3.2.1.2.2 Using a Chiral Copper(II)–3-Arylalanine Amide Complex 3.2.1.2.3 Using a Copper(II)–DNA Complex 3.2.1.3 Enantioselective Catalysis Using Other Chiral Lewis Acids 3.2.2 Enantioselective Diels–Alder Reactions Catalyzed by Organoammonium Salts 3.2.2.1 Enantioselective Catalysis Using Chiral Secondary Ammonium Salts 3.2.2.2 Enantioselective Catalysis Using Chiral Primary Ammonium Salts 3.2.2.3 Enantioselective Catalysis Using Hydrogen-Bonded Complexes 3.2.3 Hetero-Diels–Alder Reactions 3.2.3.1 Enantioselective Hetero-Diels–Alder Reactions of Carbonyl Compounds 3.2.3.1.1 Enantioselective Catalysis Using a Chiral Chromium(III) Complex 3.2.3.1.2 Enantioselective Catalysis Using Other Chiral Lewis Acids 3.2.3.1.3 Enantioselective Catalysis Using Chiral Organocatalysts 3.2.3.2 Enantioselective Hetero-Diels–Alder Reactions of Imines and Related Compounds 3.2.3.2.1 Enantioselective Aza-Diels–Alder Reaction of Electron-Rich Dienes with Imines 3.2.3.2.2 Enantioselective Aza-Diels–Alder Reaction of 1-Azabuta-1,3-dienes 3.3 [m+n+1]-Carbocyclization Reactions T. Shibata 3.3 [m+n+1]-Carbocyclization Reactions 3.3.1 [2+2+1] Carbocyclization of Enynes with Carbon Monoxide 3.3.1.1 Enantioselective Titanium-Catalyzed Pauson–Khand Reactions 3.3.1.2 Rhodium-Catalyzed Pauson–Khand Reactions 3.3.1.2.1 Enantioselective Reactions 3.3.1.2.2 Diastereoselective Reactions 3.3.1.3 Enantioselective Iridium-Catalyzed Pauson–Khand Reactions 3.3.1.4 Enantioselective Cobalt-Catalyzed Pauson–Khand Reactions 3.3.2 Rhodium-Catalyzed [2+2+1] Carbocyclization Using Aldehydes as a Carbon Monoxide Source 3.3.2.1 Enantioselective Rhodium-Catalyzed Reactions Using Aldehydes 3.3.3 Ruthenium-Catalyzed [3+2+1] Carbocyclization of Silylalkynes and Enones with Carbon Monoxide 3.3.4 Nickel-Catalyzed [4+2+1] Carbocyclization of Dienynes with Diazomethane 3.3.5 Rhodium-Catalyzed [5+2+1] Carbocyclization of Vinylcyclopropanes and Alkynes with Carbon Monoxide 3.3.6 Palladium-Catalyzed [4+4+1] Carbocyclization of Two Vinylallenes with Carbon Monoxide 3.4 [m+n+2]-Carbocyclization Reactions C. Aubert, M. Malacria, and C. Ollivier 3.4 [m+n+2]-Carbocyclization Reactions 3.4.1 [2+2+2]-Carbocyclization Reactions 3.4.1.1 Ruthenium(II)–Mediated [2+2+2] Carbocyclizations 3.4.1.1.1 Control of Diastereoselectivity 3.4.1.1.1.1 Intramolecular Carbocyclization of Dienynes 3.4.1.2 Cobalt(I)-Mediated [2+2+2] Carbocyclizations 3.4.1.2.1 Control of Diastereoselectivity 3.4.1.2.1.1 Cocyclization of Alkynylboronates and Alkenes 3.4.1.2.1.2 Cocyclization of Diynes and Alkenes 3.4.1.2.1.3 Cocyclization of Yne-Heterocycles with Alkynes 3.4.1.2.1.4 Intramolecular Carbocyclization of Enediynes 3.4.1.2.1.5 Intramolecular Carbocyclization of Diynals and Diynones 3.4.1.2.1.6 Intramolecular Carbocyclization of Allenediynes 3.4.1.2.1.7 Intramolecular Cyclotrimerization of Chiral Triynes 3.4.1.2.2 Control of Central Chirality 3.4.1.2.2.1 Intramolecular Cyclotrimerization of Allenediynes 3.4.1.2.3 Control of Axial Chirality 3.4.1.2.3.1 Carbocyclization of Acetylene and Aryl-Substituted Monoynes Bearing Phosphoryl Moieties 3.4.1.2.3.2 Carbocyclization of 1,7-Diynes with Nitriles 3.4.1.3 Rhodium(I)-Mediated [2+2+2] Carbocyclizations 3.4.1.3.1 Control of Central Chirality 3.4.1.3.1.1 Carbocyclization of Tertiary Propargylic Alcohols, Bispropargylic Alcohols, and Dialkynylphosphine Oxides with 1,6-Diyne Esters 3.4.1.3.1.2 Carbocyclization of 1,6-Diynes with Substituted Alkenes 3.4.1.3.1.3 Carbocyclization of 1,6-Diynes with Electron-Deficient Ketones 3.4.1.3.1.4 Carbocyclization of 1,6-Enynes and Alkynes 3.4.1.3.1.5 Carbocyclization of 1,6-Enynes with Electron-Deficient Ketones 3.4.1.3.1.6 Cocyclization of Alkenyl Isocyanates and Terminal Alkynes 3.4.1.3.1.7 Cocyclization of Alkenyl Carbodiimides and Terminal Alkynes 3.4.1.3.1.8 Intramolecular Carbocyclization of Enediynes 3.4.1.3.1.9 Intramolecular Carbocyclization of Dienynes 3.4.1.3.1.10 Intramolecular Carbocyclization of 1,n-Dienynes (n = 4–6) 3.4.1.3.2 Control of Helical Chirality 3.4.1.3.2.1 Cocyclization of Tetraynes with Diynes 3.4.1.3.2.2 Intramolecular Carbocyclization of Triynes 3.4.1.3.3 Control of Axial Chirality 3.4.1.3.3.1 Cyclotrimerization of Internal Alkynes 3.4.1.3.3.2 Cocyclization of 1,6-Diynes and...


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.