Esuli / Sebastiani / Fabris | Learning to Quantify | Buch | 978-3-031-20466-1 | sack.de

Buch, Englisch, Band 47, 137 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 248 g

Reihe: The Information Retrieval Series

Esuli / Sebastiani / Fabris

Learning to Quantify


1. Auflage 2023
ISBN: 978-3-031-20466-1
Verlag: Springer International Publishing

Buch, Englisch, Band 47, 137 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 248 g

Reihe: The Information Retrieval Series

ISBN: 978-3-031-20466-1
Verlag: Springer International Publishing


This open access book provides an introduction and an overview of learning to quantify (a.k.a. “quantification”), i.e. the task of training estimators of class proportions in unlabeled data by means of supervised learning. In data science, learning to quantify is a task of its own related to classification yet different from it, since estimating class proportions by simply classifying all data and counting the labels assigned by the classifier is known to often return inaccurate (“biased”) class proportion estimates.

The book introduces learning to quantify by looking at the supervised learning methods that can be used to perform it, at the evaluation measures and evaluation protocols that should be used for evaluating the quality of the returned predictions, at the numerous fields of human activity in which the use of quantification techniques may provide improved results with respect to the naive use of classification techniques, and at advanced topics in quantification research.

The book is suitable to researchers, data scientists, or PhD students, who want to come up to speed with the state of the art in learning to quantify, but also to researchers wishing to apply data science technologies to fields of human activity (e.g., the social sciences, political science, epidemiology, market research) which focus on aggregate (“macro”) data rather than on individual (“micro”) data.


Esuli / Sebastiani / Fabris Learning to Quantify jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


- 1. The Case for Quantification. - 2. Applications of Quantification. - 3. Evaluation of Quantification Algorithms. - 4. Methods for Learning to Quantify. - 5. Advanced Topics. - 6. The Quantification Landscape. - 7. The Road Ahead.


Andrea Esuli is a tenured Senior Researcher at the Italian National Council of Research. His research interests include learning to quantify, deep learning for text analysis, cross-modal classification, technology-assisted review, and representation learning.

Alessandro Fabris is a PhD student at the University of Padova. His research interests include learning to quantify, and the fairness and bias of retrieval and classification systems.

Alejandro Moreo is a tenured Researcher at the Italian National Council of Research. His research interests include learning to quantify, deep learning for text analysis, cross-lingual text classification, authorship analysis, and representation learning.

Fabrizio Sebastiani is a tenured Director of Research at the Italian National Council of Research. His research interests include learning to quantify, cross-lingual text classification, technology-assisted review, authorship analysis, and representation learning.




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.