Eshkabilov | Practical MATLAB Modeling with Simulink | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 483 Seiten

Eshkabilov Practical MATLAB Modeling with Simulink

Programming and Simulating Ordinary and Partial Differential Equations
1. ed
ISBN: 978-1-4842-5799-9
Verlag: Apress
Format: PDF
Kopierschutz: 1 - PDF Watermark

Programming and Simulating Ordinary and Partial Differential Equations

E-Book, Englisch, 483 Seiten

ISBN: 978-1-4842-5799-9
Verlag: Apress
Format: PDF
Kopierschutz: 1 - PDF Watermark



Employ the essential and hands-on tools and functions of MATLAB's ordinary differential equation (ODE) and partial differential equation (PDE) packages, which are explained and demonstrated via interactive examples and case studies. This book contains dozens of simulations and solved problems via m-files/scripts and Simulink models which help you to learn programming and modeling of more difficult, complex problems that involve the use of ODEs and PDEs.
You'll become efficient with many of the built-in tools and functions of MATLAB/Simulink while solving more complex engineering and scientific computing problems that require and use differential equations. Practical MATLAB Modeling with Simulink explains various practical issues of programming and modelling.
After reading and using this book, you'll be proficient at using MATLAB and applying the source code from the book's examples as templates for your own projects in data science or engineering.  
What You Will LearnModel complex problems using MATLAB and SimulinkGain the programming and modeling essentials of MATLAB using ODEs and PDEsUse numerical methods to solve 1st and 2nd order ODEsSolve stiff, higher order, coupled, and implicit ODEsEmploy numerical methods to solve 1st and 2nd order linear PDEsSolve stiff, higher order, coupled, and implicit PDEsWho This Book Is For

Engineers, programmers, data scientists, and students majoring in engineering, applied/industrial math, data science, and scientific computing.  This book continues where Apress' Beginning MATLAB and Simulink leaves off.


Sulaymon L. Eshkabilov, PhD is currently a visiting professor at the Department of Agriculture and Biosystems, North Dakota State University, USA. He obtained his ME diploma from Tashkent Automobile Road Institute, his MSc from Rochester Institute of Technology, NY, USA and his PhD from Cybernetics Institute of Academy Sciences of Uzbekistan in 1994, 2001 and 2005, respectively. He was an associate professor at Tashkent Automobile Road Institute for December 2006 - January 2017. He also held visiting professor and researcher positions at Ohio University, USA for 2010/2011 and Johannes Kepler University, Austria in January - September 2017. He teaches courses: 'MATLAB/Simulink applications for mechanical engineering and numerical analysis' and 'Modeling of Engineering Systems' for undergraduate students, 'Advanced MATLAB/Mechatronics' seminar/class, 'Control applications', 'System identification', 'Experimentation and testing with analog and digital devices' for graduate students. 
His research areas are mechanical vibrations, control, mechatronics and system dynamics. He is an author of over 30 research papers published in peer reviewed journals and conference proceedings in the USA, UK, Uzbekistan, Portugal, Russian Federation, India, Germany and Egypt, and four books published in the USA, Uzbekistan and Sweden. Two of the four books are devoted to MATLAB/Simulink applications for mechanical engineering students and numerical analysis. He has worked as an external academic expert in the European Commission to assess academic projects for 2009 - 2018 and coordinated/authored five institutional joint European projects funded by the European Commission for 2003 - 2016 that involved over two dozen universities from Uzbekistan, UK, Sweden, Italy, Austria, Spain, Portugal, Romania and Belgium.  

Eshkabilov Practical MATLAB Modeling with Simulink jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Table of Contents;5
2;About the Author;13
3;About the Technical Reviewer;14
4;Acknowledgments;15
5;Introduction;16
6;Part I: Ordinary Differential Equations;20
6.1;Chapter 1: Analytical Solutions for ODEs;21
6.1.1;Classifying ODEs;22
6.1.2;Example 1;23
6.1.3;Example 2;24
6.1.4;Example 3;24
6.1.5;Analytical Solutions of ODEs;26
6.1.5.1;dsolve();26
6.1.6;Example 4;26
6.1.7;Example 5;27
6.1.8;Example 6;29
6.1.9;Example 7;29
6.1.10;Second-Order ODEs and a System of ODEs;31
6.1.11;Example 8;31
6.1.12;Example 9;32
6.1.13;Example 10;33
6.1.14;Example 11;34
6.1.15;Example 12;34
6.1.16;Example 13;35
6.1.17;Laplace Transforms;40
6.1.18;Example 14;42
6.1.18.1;laplace/ilaplace;43
6.1.19;Example 15;43
6.1.20;Example 16;44
6.1.21;Example 17;44
6.1.22;Example 18;44
6.1.23;Example 19;48
6.1.24;Example 20;52
6.1.25;Example 21;54
6.1.26;References;58
6.2;Chapter 2: Numerical Methods for First-Order ODEs;59
6.2.1;Euler Method;59
6.2.2;Example 1;60
6.2.3;Improved Euler Method;62
6.2.4;Backward Euler Method;63
6.2.5;Example 2;65
6.2.6;Midpoint Rule Method;68
6.2.7;Example 3;69
6.2.8;Ralston Method;73
6.2.9;Runge-Kutta Method;74
6.2.10;Example 4;75
6.2.11;Runge-Kutta-Gill Method;78
6.2.12;Runge-Kutta-Fehlberg Method;81
6.2.13;Adams-Bashforth Method;84
6.2.14;Example 5;84
6.2.15;Milne Method;90
6.2.16;Example 6;91
6.2.17;Taylor Series Method;93
6.2.18;Example 7;93
6.2.19;Adams-Moulton Method;96
6.2.20;Example 8;98
6.2.21;MATLAB’s Built-in ODE Solvers;103
6.2.22;Example 9;105
6.2.22.1;The OPTIONS, ODESET, and ODEPLOT Tools of Solvers;111
6.2.23;Example 10;113
6.2.24;Example 11;116
6.2.25;Simulink Modeling;121
6.2.26;Example 12;121
6.2.27;SIMSET;129
6.2.28;References;130
6.3;Chapter 3: Numerical Methods for Second-Order ODEs;131
6.3.1;Euler Method;132
6.3.2;Example 1;132
6.3.3;Example 2;136
6.3.4;Example 3;138
6.3.5;Example 4;140
6.3.6;Example 5;142
6.3.7;Runge-Kutta Method;146
6.3.8;Example 6;146
6.3.9;Example 7;149
6.3.10;Example 8;152
6.3.11;Example 9;154
6.3.12;Example 10;156
6.3.13;Adams-Moulton Method;159
6.3.14;Example 11;159
6.3.15;Example 12;164
6.3.16;Simulink Modeling;169
6.3.17;Example 13;169
6.3.18;Example 14;171
6.3.19;Example 15;174
6.3.20;Example 16;175
6.3.21;Nonzero Starting Initial Conditions;176
6.3.22;Example 17;177
6.3.23;ODEx Solvers;180
6.3.24;Example 18;181
6.3.25;Example 19;183
6.3.26;Example 20;184
6.3.27;Example 21;187
6.3.28;diff();190
6.3.29;Example 22;190
6.4;Chapter 4: Stiff ODEs;194
6.4.1;Example 1;194
6.4.2;Example 2;196
6.4.3;Example 3;197
6.4.4;Example 4;200
6.4.5;Jacobian Matrix;202
6.4.6;Example 5;203
6.4.7;Example 6;206
6.5;Chapter 5: Higher-Order and Coupled ODEs;210
6.5.1;Fourth-Order ODE Problem;210
6.5.2;Robertson Problem;214
6.5.3;Akzo-Nobel Problem;216
6.5.4;HIRES Problem;223
6.5.5;Reference;228
6.6;Chapter 6: Implicit ODEs;229
6.6.1;Example 1;230
6.6.2;Example 2;234
6.6.3;Example 3;236
6.6.4;Example 4;239
6.6.5;Example 5;242
6.6.6;Example 6;245
6.6.7;References;248
6.7;Chapter 7: Comparative Analysis of ODE Solution Methods;249
6.7.1;Example 1;250
6.7.2;Drill Exercises;267
6.7.3;Exercise 1;267
6.7.4;Exercise 2;268
6.7.5;Exercise 3;268
6.7.6;Exercise 4;269
6.7.7;Exercise 5;269
6.7.8;Exercise 6;270
6.7.9;Exercise 7;271
6.7.10;Exercise 8;272
6.7.11;Exercise 9;273
6.7.12;Exercise 10;274
6.7.13;Exercise 11;274
6.7.14;Exercise 12;275
6.7.15;Exercise 13;275
7;Part II: Boundary Value Problems in Ordinary Differential Equations;276
7.1;Chapter 8: Boundary Value Problems;277
7.1.1;Dirichlet Boundary Condition Problem;281
7.1.2;Example 1;281
7.1.3;Example 2;285
7.1.4;Robin Boundary Condition Problem;288
7.1.5;Example 3;288
7.1.6;Sturm-Liouville Boundary Value Problem;293
7.1.7;Example 4;294
7.1.8;Stiff Boundary Value Problem;299
7.1.9;Example 5;299
7.1.10;References;303
7.1.11;Drill Exercises;303
7.1.12;Exercise 1;304
7.1.13;Exercise 2;304
7.1.14;Exercise 3;304
7.1.15;Exercise 4;304
7.1.16;Exercise 5;304
7.1.17;Exercise 6;305
7.1.18;Exercise 7;305
7.1.19;Exercise 8;305
7.1.20;Exercise 9;305
7.1.21;Exercise 10;306
7.1.22;Exercise 11;306
7.1.23;Exercise 12;306
7.1.24;Exercise 13;306
8;Part III: Applications of Ordinary Differential Equations;307
8.1;Chapter 9: Spring-Mass-Damper Systems;308
8.1.1;Single Degree of Freedom System;308
8.1.2;Case 1: Free Vibration (Motion);308
8.1.3;Case 2: Forced Vibration (Motion);322
8.1.4;Two Degrees of Freedom System;333
8.1.5;Three Degrees of Freedom System;341
8.1.6;Matrix Approach for n-Degree of Freedom System;349
8.1.7;References;356
8.2;Chapter 10: Electromechanical and Mechanical Systems;358
8.2.1;Modeling a DC Motor;358
8.2.2;Modeling a DC Motor with Flexible Load;363
8.2.3;Modeling a Microphone;369
8.2.4;Modeling Motor: Pump Gear Box;374
8.2.4.1;Modeling Double Pendulum;384
8.2.5;Reference;397
8.3;Chapter 11: Trajectory Problems;398
8.3.1;Falling Object;398
8.3.2;Thrown Ball Trajectories;401
8.3.3;References;413
8.4;Chapter 12: Simulation Problems;414
8.4.1;Lorenz System;414
8.4.2;Lotka-Voltera Problem;420
8.4.3;References;424
8.4.4;Drill Exercises;425
8.4.5;Exercise 1;425
8.4.6;Exercise 2;426
8.4.7;Exercise 3;426
8.4.8;Exercise 4;426
8.4.9;Exercise 5;427
8.4.10;Exercise 6;427
8.4.11;Exercise 7;428
8.4.12;Exercise 8;428
8.4.13;Exercise 9;429
8.4.14;Exercise 10;429
8.4.15;Exercise 11;429
8.4.16;Exercise 12;430
8.4.17;Exercise 13;430
8.4.18;Exercise 14;431
8.4.19;Exercise 15;432
8.4.20;Exercise 16;433
8.4.21;Exercise 17;435
8.4.22;Exercise 18;436
9;Part IV: Partial Differential Equations;439
9.1;Chapter 13: Solving Partial Differential Equations;440
9.1.1;pdepe();441
9.1.2;One-Dimensional Heat Transfer Problem;442
9.1.3;Example 1;443
9.1.4;Two-Dimensional Heat Transfer: Solving an Elliptic PDE with the Gauss-Seidel Method;447
9.1.5;Example 2;449
9.1.6;del2(): Laplace Operator;454
9.1.7;Example 3;455
9.1.8;Wave Equation;458
9.1.9;Solving a One-Dimensional Wave Equation;459
9.1.10;Example 4;462
9.1.11;Solving a Two-Dimensional Wave Equation;466
9.1.12;Example 5;467
9.1.13;References;470
9.1.14;Drill Exercises;471
9.1.15;Exercise 1;471
9.1.16;Exercise 2;471
9.1.17;Exercise 3;471
9.1.18;Exercise 4;472
9.1.19;Exercise 5;472
9.1.20;Exercise 6;472
9.1.21;Exercise 7;472
9.1.22;Exercise 8;472
9.1.23;Exercise 9;473
9.1.24;Exercise 10;473
9.1.25;Exercise 11;473
9.1.26;Exercise 12;474
9.1.27;Exercise 13;474
10;Index;475



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.