Erbisti | Design of Hydraulic Gates, 2nd Edition | E-Book | sack.de
E-Book

E-Book, Englisch, 442 Seiten

Erbisti Design of Hydraulic Gates, 2nd Edition


2. Auflage 2014
ISBN: 978-0-203-39624-7
Verlag: CRC Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 442 Seiten

ISBN: 978-0-203-39624-7
Verlag: CRC Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Revised and updated, this second edition of Design of Hydraulic Gates maintains the same goal as the original: to be used as a textbook and a manual of design of gates, presenting the main aspects of design, manufacture, installation and operation of hydraulic gates, while introducing new products, technologies and calculation procedures. This edition included new chapters on intake gates and trashrack design, highlighting the aspects of safety, operational and maintenance procedures. To improve the strength against structural failure of intake trashracks, the author proposes a series of rigid calculation assumptions, design parameters and manufacturing procedures, which will certainly result in safer trashracks. Some 340 drawings and photographs, 82 tables, 107 references and 23 worked examples help the reader to understand the basic concepts and calculation methods presented.

Erbisti Design of Hydraulic Gates, 2nd Edition jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface
Acknowledgements

1 Introduction
1.1 History and development
1.2 Gate components
1.3 Main applications
1.4 Types and classifications
1.4.1 Purpose
1.4.2 Movement
1.4.3 Water passage
1.4.4 Gate leaf composition
1.4.5 Location
1.4.6 Skin plate shape

2 Types of gates
2.1 Flap gate
2.2 Cylinder gate
2.3 Stoplogs
2.4 Slide gate
2.5 Caterpillar gate
2.6 Miter gate
2.7 Roller gate
2.8 Segment gate
2.9 Sector gate
2.10 Stoney gate
2.11 Drum gate
2.12 Bear-trap gate
2.13 Fixed-wheel gate
2.14 Visor gate

3 Basis for selection of gate type
3.1 Introduction
3.2 Most common types
3.3 Operational requirements
3.4 Present limits of gate sizes and heads

4 Hydrostatics
4.1 Introduction
4.2 Vertical lift gates
4.2.1 Weir gates
4.2.2 Submerged gates
4.2.3 Spacing of horizontal beams
4.3 Radial gates

5 Structural design
5.1 Load cases
5.2 Allowable stresses
5.3 Skin plate
5.3.1 Thickness
5.3.2 Plate stresses
5.3.3 Effective width
5.4 Horizontal beams
5.4.1 Number of beams
5.4.2 Girder dimensions
5.4.2.1 Web thickness
5.4.2.2 Web depth
5.4.2.3 Flanges
5.4.3 Elastic stability
5.4.3.1 Compression flanges
5.4.3.2 Web stability
5.4.3.3 Stiffeners
5.4.4 Simple bending of beams
5.5 Segment gate
5.5.1 Skin plate
5.5.2 Gate framing
5.5.2.1 Girder arrangement
5.5.2.2 Horizontal beams
5.5.2.3 Vertical beams
5.5.3 Radial arms
5.5.3.1 Axial loads on the arms
5.5.3.2 Bearing loads
5.5.3.3 Buckling check
5.6 Silt pressure on gates
5.7 Gate seismic loads

6 Embedded parts, guides and supports
6.1 Slots and niches
6.2 Wheel track
6.2.1 Beam on an elastic foundation
6.2.2 Dimensioning by the Andree-Fricke theory
6.3 Slide tracks
6.4 Concrete bearing pressure
6.5 Lateral guidance
6.6 Wheels and pins
6.6.1 Design features
6.6.2 Contact pressure between wheel and track
6.6.3 Permissible contact stresses 1
6.6.4 Surface hardness
6.7 Gate hinges and bearings
6.7.1 Types of bearings
6.7.2 Cylindrical bushings
6.7.3 Spherical plain bearing
6.7.4 Roller bearings

7 Estimating gate weights
7.1 Introduction
7.2 Segment gates
7.3 Fixed-wheel gates
7.4 Double-leaf fixed-wheel gates
7.5 Stoplogs
7.6 Flap gates
7.7 Caterpillar gates
7.8 Embedded parts

8 Hydrodynamic forces
8.1 Introduction
8.2 Model tests
8.3 Factors influencing downpull
8.4 Formulae for the prediction of downpull
8.5 Method of Knapp

9 Gate operating forces
9.1 Introduction
9.2 Gate weight
9.3 Friction on supports and hinges
9.4 Seal deflection
9.5 Seal friction

10 Aeration
10.1 Introduction
10.2 Air vents – functions and features
10.3 Air vents – empirical calculation
10.4 Air-demand ratio
10.5 Air vent dimensioning

11 Gate hoists
11.1 Introduction
11.2 Screw lifts
11.3 Wire ropes
11.4 Roller chains
11.5 Oil hydraulic drives
11.6 Gate hoist arrangement
11.7 Hand operation
11.8 Design criteria
11.8.1 Load capacity
11.8.2 Operating speed
11.8.3 Safety factors
11.9 Gate position measurement

12 Materials
12.1 Introduction
12.2 Heat treatment
12.3 Rolled steels
12.4 Steels for machine elements
12.5 Stainless steels
12.6 Cast steels
12.7 Forged steels
12.8 Gray cast irons
12.9 Bronzes
12.10 Bolts

13 Gate seals
13.1 Introduction
13.2 Wood seals
13.3 Metallic seals
13.4 Rubber seals
13.5 Material for rubber seals
13.6 Clad seals
13.7 Rubber seal hardness
13.8 Rubber specifications
13.9 Seal leakage
13.10 Manufacture and assembly of seals
13.11 High-head segment gates – design considerations
13.12 Double-sealing gates

14 Manufacture, transportation and erection
14.1 Manufacture
14.1.1 Manufacturing steps
14.1.2 Full-size layout drawings
14.1.3 Storing of raw material
14.1.4 Marking
14.1.5 Cutting
14.1.6 Curving
14.1.7 Structure welding
14.1.8 Finishing
14.1.9 Pre-assembly
14.1.10 Machining
14.1.11 Mechanical fit-up
14.1.12 Anticorrosive protection
14.1.13 Inspection
14.1.14 Manufacturing tolerances
14.2 Transportation
14.3 Field erection
14.3.1 Erection instructions
14.3.2 Erection of embedded parts
14.3.3 Erection tolerances of embedded parts
14.3.4 Gate assembly
14.4 Acceptance tests

15 Trends and innovation in gate design
15.1 Long-span gates
15.2 High-head gates
15.3 Refurbishment and modernization of gates and dams
15.3.1 Heightening of existing gates
15.3.2 Installation of new gates on the top of the dam

16 Intake gates
16.1 Intake gates and accessories
16.2 Types of emergency gates
16.3 Gate hoists
16.3.1 Types of hoists
16.3.2 Hydraulic hoists
16.3.3 Cable hoists
16.3.4 Gantry cranes
16.4 Filling the penstock
16.5 Aeration
16.6 Guard gates for Kaplan turbines
16.7 Guard gates for bulb turbines
16.8 Draft tube stoplogs for bulb and Kaplan turbines

17 Intake trashracks
17.1 Introduction
17.2 Rack bar spacing
17.3 Design considerations
17.4 Flow velocity
17.5 Head loss
17.6 Flow-induced vibrations
17.7 Rack-cleaning machines
17.8 Safe design criteria for trashracks

Name index
Subject index


Brazilian engineer Paulo Erbisti graduated in mechanical engineering and has amassed considerable experience working on numerous hydromechanical projects, contributing greatly to hydropower/dam engineering over the last few decades in South America, Africa and Asia. He has worked on many important projects including Itaipu, Belo Monte, Tucurui, Gotvand, Tarbela, Capanda, Guri and Tocoma. Erbisti is a visiting professor on the topic of hydraulic gate design for the post-graduate course of hydraulic engineering at the University of Paraná, Brazil. He is a member of the consulting board of the International Journal on Hydropower and Dams, UK. In 2011, he was elected by International Water Power & Dam Construction magazine as one of twenty people believed to have made the biggest difference to the sector over the last decade.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.