Buch, Englisch, 110 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 230 g
A Practical Strategy via Structural Displacements from Synthetic Aperture Radar Images
Buch, Englisch, 110 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 230 g
Reihe: SpringerBriefs in Applied Sciences and Technology
ISBN: 978-3-031-53994-7
Verlag: Springer Nature Switzerland
This book offers an in-depth investigation into the complexities of long-term structural health monitoring (SHM) in civil structures, specifically focusing on the challenges posed by small data and environmental and operational changes (EOCs). Traditional contact-based sensor networks in SHM produce large amounts of data, complicating big data management. In contrast, synthetic aperture radar (SAR)-aided SHM often faces challenges with small datasets and limited displacement data. Additionally, EOCs can mimic the structural damage, resulting in false errors that can critically affect economic and safety issues. Addressing these challenges, this book introduces seven advanced unsupervised learning methods for SHM, combining AI, data sampling, and statistical analysis. These include techniques for managing datasets and addressing EOCs. Methods range from nearest neighbor searching and Hamiltonian Monte Carlo sampling to innovative offline and online learning frameworks, focusing on data augmentation and normalization. Key approaches involve deep autoencoders for data processing and novel algorithms for damage detection. Validated using simulated data from the I-40 Bridge, USA, and real-world data from the Tadcaster Bridge, UK, these methods show promise in addressing SAR-aided SHM challenges, offering practical tools for real-world applications. The book, thereby, presents a comprehensive suite of innovative strategies to advance the field of SHM.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Technische Wissenschaften Bauingenieurwesen Konstruktiver Ingenieurbau, Baustatik
Weitere Infos & Material
Pioneering Remote Sensing in Structural Health Monitoring.- Advanced ML Methods: Bridging SAR Images and Structural Health Monitoring.- Simulating Reality: Numerical Assessments of a Bridge Health Monitoring.- From Theory to Reality: Advanced SHM Methods to the Tadcaster Bridge.- Conclusions and Prospects for Structural Health Monitoring.