Emmert-Streib / Dehmer / Moutari | Elements of Data Science, Machine Learning, and Artificial Intelligence Using R | Buch | 978-3-031-13338-1 | sack.de

Buch, Englisch, 575 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1159 g

Emmert-Streib / Dehmer / Moutari

Elements of Data Science, Machine Learning, and Artificial Intelligence Using R


2023
ISBN: 978-3-031-13338-1
Verlag: Springer International Publishing

Buch, Englisch, 575 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1159 g

ISBN: 978-3-031-13338-1
Verlag: Springer International Publishing


The textbook provides students with tools they need to analyze complex data using methods from data science, machine learning and artificial intelligence. The authors include both the presentation of methods along with applications using the programming language R, which is the gold standard for analyzing data. The authors cover all three main components of data science: computer science; mathematics and statistics; and domain knowledge. The book presents methods and implementations in R side-by-side, allowing the immediate practical application of the learning concepts. Furthermore, this teaches computational thinking in a natural way. The book includes exercises, case studies, Q&A and examples.
Emmert-Streib / Dehmer / Moutari Elements of Data Science, Machine Learning, and Artificial Intelligence Using R jetzt bestellen!

Zielgruppe


Upper undergraduate

Weitere Infos & Material


Introduction.- Introduction to learning from data.- Part 1: General topics.- Prediction models.- Error measures.- Resampling.- Data types.- Part 2: Core methods.- Maximum Likelihood & Bayesian analysis.- Clustering.- Dimension Reduction.- Classification.- Hypothesis testing.- Linear Regression.- Model Selection.- Part 3: Advanced topics.- Regularization.- Deep neural networks.- Multiple hypothesis testing.- Survival analysis.- Generalization error.- Theoretical foundations.- Conclusion.


Frank Emmert-Streib is Professor of Data Science at Tampere University (Finland). He leads the Predictive Society and Data Analytics Lab, which pursues innovative research in deep learning and natural language processing. The Lab develops and applies high-dimensional methods in machine learning, statistics, and artificial intelligence that can be used to extract knowledge from data in the fields of biology, medicine, social media, social sciences, marketing, or business.

Salissou Moutari is Senior Lecturer at Queen’s University Belfast (UK) and Interim Director of Research of the Mathematical Science Research Centre (MSRC). His research interests include mathematical modelling, optimization, machine learning and data science, and the applications of these methods to problems from traffic, transportation and distribution systems, production planning and industrial processes.

Matthias Dehmer is Professor at UMIT (Austria) and also has a position at Swiss Distance University of Applied Sciences, Brig, Switzerland. His research interests are in complex networks, complexity, data science, machine learning, big data analytics, and information theory. In particular, he is working on machine learning based methods to analyse high-dimensional data.




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.