Emmanouil | Idempotent Matrices over Complex Group Algebras | Buch | 978-3-540-27990-7 | sack.de

Buch, Englisch, 282 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 920 g

Reihe: Universitext

Emmanouil

Idempotent Matrices over Complex Group Algebras


Erscheinungsjahr 2005
ISBN: 978-3-540-27990-7
Verlag: Springer

Buch, Englisch, 282 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 920 g

Reihe: Universitext

ISBN: 978-3-540-27990-7
Verlag: Springer


The study of idempotent elements in group algebras (or, more generally, the study of classes in the K-theory of such algebras) originates from geometric and analytic considerations. For example, C.T.C. Wall [72] has shown that the problem of deciding whether a ?nitely dominated space with fundamental group? is homotopy equivalent to a ?nite CW-complex leads naturally to the study of a certain class in the reduced K-theoryK (Z?) of the group ringZ?. 0 As another example, consider a discrete groupG which acts freely, properly discontinuously, cocompactly and isometrically on a Riemannian manifold. Then, following A. Connes and H. Moscovici [16], the index of an invariant 0th-order elliptic pseudo-di?erential operator is de?ned as an element in the ? ? K -group of the reduced groupC -algebraCG. 0 r Theidempotentconjecture(alsoknownasthegeneralizedKadisonconjec- ? ? ture) asserts that the reduced groupC -algebraCG of a discrete torsion-free r groupG has no idempotents =0,1; this claim is known to be a consequence of a far-reaching conjecture of P. Baum and A. Connes [6]. Alternatively, one mayapproachtheidempotentconjectureasanassertionabouttheconnect- ness of a non-commutative space;ifG is a discrete torsion-free abelian group ? thenCG is the algebra of continuous complex-valued functions on the dual r

Emmanouil Idempotent Matrices over Complex Group Algebras jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


Introduction.- Motivating Examples.- Reduction to Positive Characteristic.- A Homological Approach.- Completions of CG.- Appendices: Tools from Commutative Algebra.- Discrete Ring-valued Integrals.- Frobenius' Density Theorem.- Homological Techniques.- Comparison of Projections.


Ioannis Emmanouil was initiated to mathematics in Athens, Greece and then moved to Berkeley, where he studied homological algebra, algebraic geometry and K-theory with Mariusz Wodzicki. After receiving his Ph.D. from Berkeley in 1994, he taught for three years at the University of Michigan as a Hildebrandt Assistant Professor. He moved back to Europe in 1997 and after a year at IHES, returned to Greece in 1998. At present, he is a member of the faculty of the University of Athens.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.