El-Osery / Prevost | Control and Systems Engineering | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 27, 380 Seiten

Reihe: Studies in Systems, Decision and Control

El-Osery / Prevost Control and Systems Engineering

A Report on Four Decades of Contributions
1. Auflage 2015
ISBN: 978-3-319-14636-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

A Report on Four Decades of Contributions

E-Book, Englisch, Band 27, 380 Seiten

Reihe: Studies in Systems, Decision and Control

ISBN: 978-3-319-14636-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book is a tribute to 40 years of contributions by Professor Mo Jamshidi who is a well known and respected scholar, researcher, and educator. Mo Jamshidi has spent his professional career formalizing and extending the field of large-scale complex systems (LSS) engineering resulting in educating numerous graduates specifically, ethnic minorities. He has made significant contributions in modeling, optimization, CAD,  control and applications of large-scale systems leading to his current global role in formalizing  system of systems engineering (SoSE), as a new field. His books on complex LSS and SoSE have filled a vacuum in cyber-physical systems literature for the 21st Century. His contributions to ethnic minority engineering education commenced with his work at the University of New Mexico (UNM, Tier-I Hispanic Serving Institution) in 1980 through a NASA JPL grant. Followed by several more major federal grants, he formalized a model for educating minorities, called VI-P Pyramid where K-12 students(bottom of pyramid) to doctoral (top of pyramid) students form a seamless group working on one project. Upper level students mentor lower ones on a sequential basis. Since 1980, he has graduated over 114 minority students consisting of 62 Hispanics, 34 African Americans., 15 Native Americans, and 3 Pacific Islanders. This book contains contributed chapters from colleagues, and former and current students of Professor Jamshidi. Areas of focus are: control systems, energy and system of systems, robotics and soft computing.

El-Osery / Prevost Control and Systems Engineering jetzt bestellen!

Weitere Infos & Material


1;Forewords;1
2;Preface;1
3;Contents;1
4;Reflection on Four Decades of Contributions of My Graduate Students;25
4.1;1Introduction;25
4.2;2Graduate Students;26
4.2.1;2.1MS Students;26
4.2.2;2.2PhD Students;31
4.2.3;2.3Visiting Overseas Ph.D. Students;36
4.3;3Conclusions;36
5;Proportional-Integral Observer in Robust Control, Fault Detection, and Decentralized Control of Dynamic Systems;37
5.1;1Introduction;37
5.2;2Observer Fundamentals;38
5.2.1;2.1Full-Order Observer and State Feedback;39
5.2.2;2.2Reduced-Order Observer;40
5.2.3;2.3Functional Observer;42
5.3;3Robustness with Observers;46
5.3.1;3.1P-Observer and Loop Transfer Recovery;46
5.3.2;3.2PI-Observer and Robustness;47
5.4;4Disturbance Estimation and Fault Detection with Observers;50
5.4.1;4.1Disturbance Observer (DO);50
5.4.2;4.2Unknown Input Observer (UIO);51
5.4.3;4.3Proportional-Integral Observer (PIO);52
5.4.4;4.4Fault Detection;54
5.5;5Decentralized PI-Observer Design;55
5.6;6Decentralized PI-Observer-Based Control Design;60
5.6.1;6.1bserver Case;61
5.6.2;6.2PI-Observer Case;62
5.7;7Conclusion;64
6;New Application of an Adaptive Controller Based on Robust Fixed Point Transformations;68
6.1;1Introduction;68
6.2;2Nonlinear Order Reduction in Adaptive Control Based on Approximate Dynamic Model;70
6.3;3Immediate Antecedents in WMR Control;71
6.4;4The More General Model;73
6.4.1;4.1The Physical Basis;73
6.4.2;4.2The Sign Conventions and the Final Results;74
6.4.3;4.3Combination of the Dynamic Models of the DC Motor and the Cart;76
6.4.4;4.4Anisotropic and Dynamically Varying Resolution of the Non-Holonomic Constraints;77
6.5;5The RFPT-Based Adaptivity;79
6.6;6Simulation Results;80
6.7;7Conclusions;86
7;Hybrid Functions Approach for Variational Problems and Optimal Control of Delay Systems;90
7.1;1Introduction;90
7.2;2Properties of Hybrid Functions;93
7.2.1;2.1Hybrid of Block-Pulse and Bernoulli Polynomials;93
7.2.2;2.2Function Approximation;94
7.2.3;2.3Integration of B(t)BT(t);95
7.2.4;2.4Operational Matrix of Integration;96
7.2.5;2.5The Operational Matrix of Product;96
7.2.6;2.6The Operational Matrix of Delay;97
7.3;3The Numerical Methods;97
7.3.1;3.1Problem (a);97
7.3.2;3.2Problem (b);99
7.4;4Main Feature of the Method;102
7.5;5Illustrative Examples;102
7.5.1;5.1Example 1;102
7.5.2;5.2Example 2;104
7.5.3;5.3Example 3;105
7.5.4;5.4Example 4;106
7.5.5;5.5Example 5;107
7.5.6;5.6Example 6;108
7.6;6Conclusion;110
8;Punctuated Anytime Learningfor Autonomous Agent Control;112
8.1;1 Introduction;112
8.2;2 Punctuated Anytime Learning;113
8.2.1;2.1 The Co-Evolution of Model Parameters;115
8.2.2;2.2 Fitness Biasing;115
8.3;3 Using the Co-Evolution of Model Parameters for HexapodRobot Gait Development;116
8.3.1;3.1 Robot and Model;117
8.3.2;3.2 Cyclic Genetic Algorithm;118
8.3.3;3.3 Using the Co-Evolution of Model Parameters to Learn Gaits;118
8.3.4;3.4 Results;120
8.4;4 Using Fitness Biasing for Xpilot Game Agent Control;122
8.4.1;4.1 Xpilot-AI;124
8.4.2;4.2 Fitness Biasing Applied to Xpilot-AI;125
8.4.3;4.3 Results;126
8.5;5 Discussion;127
8.6;6 Conclusion;128
8.7;References;129
9;Big Data Analytic: Cases for Communications SystemsModeling and Renewable Energy Forecast;131
9.1;1 Cost-Efficient Approach to ROF Communications SystemsDesign for CATV Channels over WDM Network and Fuzzy-GA Estimation;132
9.1.1;1.1 Introduction;132
9.1.2;1.2 Optimized System Design to Overcome DM Laser Limitations;133
9.1.3;1.3 System Analysis;133
9.1.4;1.4 Simulation Results;134
9.1.5;1.5 Fuzzy-GA Estimation;136
9.2;2 Big Data Analytic for 24-hour Ahead Solar Energy Forecast;140
9.2.1;2.1 Introduction;140
9.2.2;2.2 Problem Statement and Solar Forecasting State-of-the-art;141
9.2.3;2.3 Framework Development; Proposed Approach to Solar EnergyForecasting;142
9.2.4;2.4 Performance Evaluation Metrics;150
9.2.5;2.5 Forecast Results and Discussion;151
9.3;3 Conclusion and Remarks;153
9.4;References;154
10;Area Coverage in a Fixed-Obstacle Environment Using Mobile Sensor Networks;157
10.1;1Introduction;157
10.2;2Visibility-Aware Multiplicatively Weighted Voronoi Diagram;159
10.3;3Deployment Protocols;161
10.3.1;3.1Obstructed Farthest Point (OFP) Strategy;163
10.3.2;3.2Obstructed Minmax Point (OMP) Strategy;165
10.4;4Simulation Results;167
10.5;5Conclusions and Future Works;171
11;Energy Aware Load Prediction for Cloud Data Centers;174
11.1;1 Introduction;174
11.1.1;1.1 Related Research;175
11.1.2;1.2 Optimum Cloud Provisioning Method;176
11.1.3;1.3 Research Contributions and Paper Outline;177
11.2;2 Stochastic State Change Model;178
11.2.1;2.1 Determination of Probability Distribution Function;179
11.2.2;2.2 Definition of the SLA Cost Function;181
11.3;3 Dynamic Quantization Model;182
11.3.1;3.1 Determination of Cost Functions;182
11.3.2;3.2 Prediction Frequency Calculation;183
11.4;4 Linear Prediction Model;184
11.5;5 Simulation and Results;187
11.6;6 Conclusion;193
11.7;References;194
12;Behaving Nicely in a System of Systems –Harmonising with the Environment;196
12.1;1 Introduction;196
12.2;2 Systems of Systems Engineering;197
12.2.1;2.1 Definition and Characterization of Systems of Systems;197
12.2.2;2.2 Types of System of Systems;198
12.2.3;2.3 Interoperability;200
12.2.4;2.4 Summary of SoS Basics;200
12.3;3 Global Drivers for Improved SoS Design and Management;201
12.3.1;3.1 Increasing Interconnectivity, Increasing Complexity, and IncreasedInflexibility;201
12.3.2;3.2 A Perfect Storm for Europe;201
12.3.3;3.3 Agility;203
12.4;4 The SoS Research Agenda for Europe;204
12.4.1;4.1 Characterization and Description of SoS;205
12.4.2;4.2 Theoretical Foundations;206
12.4.3;4.3 Emergence;206
12.4.4;4.4 Multi-level Modelling;206
12.4.5;4.5 Measurement and Metrics;207
12.4.6;4.6 Evaluation of SoS;207
12.4.7;4.7 Definition and Evolution of SoS Architecture;208
12.4.8;4.8 Prototyping SoS;208
12.4.9;4.9 Trade-Off;209
12.4.10;4.10 Security;209
12.4.11;4.11 Human Aspects;209
12.4.12;4.12 Energy;210
12.5;5 Conclusions;210
12.6;References;211
13;Design Considerations of Dexterous Telerobotics;214
13.1;1 Introduction;214
13.2;2 Local Site Design Considerations and Challenges;215
13.2.1;2.1 Sensing (Action Identification).;215
13.2.2;2.2 Sensation Generation (Feedback);217
13.3;2 Local Site Design Considerations and Challenges;215
13.3.1;2.1 Sensing (Action Identification).;215
13.3.2;2.2 Sensation Generation (Feedback);217
13.4;3 Remote Site Design Considerations and Challenges;219
13.4.1;3.1 Action Generation;219
13.4.2;3.2 Sensing;221
13.5;4 Conclusions;221
13.6;References;222
14;Real-Time Neural Control of Mobile Robots;225
14.1;1Introduction;225
14.2;2Decentralized Systems;226
14.3;3Nonlinear System Identification;228
14.3.1;3.1Neural Identification;228
14.3.2;3.2The EKF Training Algorithm;230
14.4;4Inverse Optimal Control;231
14.5;5Shrimp Robot Application;234
14.6;6Vision Systems Application;238
14.6.1;8.1Stereo Vision;239
14.6.2;8.2Kinematic Planer;242
14.7;7 Results;242
14.8;8Conclusions;246
15;Low-Cost Inertial Navigation;250
15.1;1Notation;250
15.2;2Inertial Navigation;250
15.2.1;2.1Navigation Coordinate Frames;251
15.2.2;2.2Inertial Sensor Technology;252
15.2.3;2.3Inertial Sensor Errors;254
15.3;3Inertial Sensor Performance Comparison;258
15.3.1;3.1 Description of an ISA, IMU, IRU, and INS;259
15.3.2;3.2INS-Only Based Navigation;260
15.3.3;3.3An INS–Only Simulation Example;262
15.3.4;3.4INS Error Modeling;266
15.4;4GPS-Only Based Navigation;266
15.5;5GPS/INS–Based Navigation;268
15.5.1;5.1Introduction;268
15.5.2;5.2Uncoupled GPS/INS Integration;269
15.5.3;5.3Loosely-Coupled GPS/INS Integration;269
15.5.4;5.4Tightly-Coupled GPS/INS Integration;273
15.5.5;5.5Deeply-Coupled GPS/INS;273
15.6;6Conclusion;277
16;Hardware Implementation of Fuzzy Logic Controller-Designability, Stability and Robustness-;279
16.1;1 Introduction;279
16.2;2 Practical Hardware Systems;280
16.2.1;2.1 Current Mode Integrated Circuits1,2,3,4,5,6,7,8,9,10,11,12,13,14;280
16.2.2;2.2 Membership Function Generator in Voltage Mode15;281
16.2.3;2.3 Fuzzy Inference Engine Board of Voltage Mode Circuit16;282
16.2.4;2.4 Commercial Hardware for Fuzzy Logic Control in Voltage Mode17,18,19;283
16.2.5;2.5 Wine Glass/Mouse Stabilization by Employing the Fuzzy LogicController20;286
16.2.6;2.6 Fuzzy Chips –Rule Chip and Defuzzifier Chip–;288
16.3;3 Applications;289
16.4;4 Conclusions;290
16.5;References;290
17;Decision Making under Z-Information;292
17.1;1 Critical Analysis of the Existing Decision Theories;292
17.2;2 Isights for Development of New Theory of Decisions;294
17.3;3 The Evolut?on of Model?ng Dec?s?on-Relevant Informat?on;294
17.4;4 Basic Principles of the Suggested New Theory of Decisions;295
17.4.1;4.1 Z-Restriction;295
17.4.2;4.2 Combined States;295
17.4.3;4.3 Short Description of a New Theory;296
17.5;5 Statement of the Problem in the Suggested Theory ofDecisions;297
17.6;6 Model;299
17.7;7 Solving Methodology for a Suggested Theory of Decisions;303
17.8;8 Conclusion;304
17.9;References;304
18;Agencies of Intelligence: From the Macro to the Nano;305
18.1;1 Introduction;305
18.2;2 What Is Intelligence? A Macro Perspective;307
18.2.1;2.1 Generalization;307
18.2.2;2.2 Optimization by Nature;313
18.2.3;2.3 Learning from Psychology;315
18.3;3 What Is Intelligence? A Micro Perspective;316
18.3.1;3.1 Confabulation-Inspired Association Rule Mining (CARM);317
18.4;4 Social Intelligence? Intelligence Is as a Result of Interaction(Cooperation/Competition) of Several Beings;318
18.4.1;4.1 Fault Detection and Isolation by a Hybrid Fuzzy and Neuro Approach;319
18.4.2;4.2 Distributed Urban Traffic Control and Modeling;319
18.4.3;4.3 What about Shared Autonomy? Social Intelligence with the Human in theLoop;320
18.5;5 What Is Intelligence? The Intelligence of the Many;321
18.5.1;5.1 Spin Glasses for Optimization and Portfolio Selection;321
18.5.2;5.2 Swarm Control for Atherosclerosis and Cancer;322
18.6;6 Conclusion;325
18.7;References;326
19;Erratum: Control and Systems Engineering;328
20;Personal Notes;329
21;Appendix: Mo Jamshidi Publication List;339
22;Name Index;1



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.