El Gayar / Suen / Schwenker | Artificial Neural Networks in Pattern Recognition | Buch | 978-3-319-11655-6 | sack.de

Buch, Englisch, 289 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 4628 g

Reihe: Lecture Notes in Artificial Intelligence

El Gayar / Suen / Schwenker

Artificial Neural Networks in Pattern Recognition

6th IAPR TC 3 International Workshop, ANNPR 2014, Montreal, QC, Canada, October 6-8, 2014, Proceedings
2014
ISBN: 978-3-319-11655-6
Verlag: Springer International Publishing

6th IAPR TC 3 International Workshop, ANNPR 2014, Montreal, QC, Canada, October 6-8, 2014, Proceedings

Buch, Englisch, 289 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 4628 g

Reihe: Lecture Notes in Artificial Intelligence

ISBN: 978-3-319-11655-6
Verlag: Springer International Publishing


This book constitutes the refereed proceedings of the 6th IAPR TC3 International Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2014, held in Montreal, QC, Canada, in October 2014. The 24 revised full papers presented were carefully reviewed and selected from 37 submissions for inclusion in this volume. They cover a large range of topics in the field of learning algorithms and architectures and discussing the latest research, results, and ideas in these areas.

El Gayar / Suen / Schwenker Artificial Neural Networks in Pattern Recognition jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


A Decorrelation Approach for Pruning of Multilayer Perceptron Networks.- Entity Recognition.- Incremental Feature Selection by Block Addition and Block Deletion Using Least Squares SVRs.- Low-dimensional Data Representation in Data Analysis.- Analyzing dynamic ensemble selection techniques using dissimilarity Analysis.- Hidden Markov Models Based on Generalized Dirichlet Mixtures for Proportional Data Modeling.- Majority-Class aware Support Vector Domain Oversampling for Imbalanced Classification Problems.- Forward and Backward Forecasting Ensembles for the Estimation of Time Series Missing Data.- Dynamic Weighted Fusion of Adaptive Classifier Ensembles Based on Changing Data Streams: Combining Bipartite Graph Matching and Beam Search for Graph Edit Distance Approximation.- Computing Upper and Lower Bounds of Graph Edit Distance in Cubic Time.- Linear contrast classifiers in high-dimensional spaces.- A new multi-class fuzzy support vector machine algorithm.- A reinforcement learningalgorithm to train a Tetris playing agent.- Bio-inspired optic ow from event-based neuromorphic sensor input.- Comparative Study of Feature Selection for White Blood Cell End-Shape Recognition for Arabic Handwritten Text Segmentation.- Intelligent Ensemble Systems for Modeling NASDAQ Microstructure: A Comparative Study.- Face Recognition based on Discriminative Dictionary with Multilevel Feature Fusion.- Ensembles in Ubiquitous Healthcare Systems.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.