Eisenstein / Bimberg | Green Photonics and Electronics | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 299 Seiten

Reihe: NanoScience and Technology

Eisenstein / Bimberg Green Photonics and Electronics


1. Auflage 2017
ISBN: 978-3-319-67002-7
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 299 Seiten

Reihe: NanoScience and Technology

ISBN: 978-3-319-67002-7
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark



This books focuses on recent break-throughs in the development of a variety of photonic devices, serving distances ranging from mm to many km, together with their electronic counter-parts, e.g. the drivers for lasers, the amplifiers following the detectors and most important, the relevant advanced VLSI circuits. It explains that as a consequence of the increasing dominance of optical interconnects for high performance workstation clusters and supercomputers their complete design has to be revised. This book thus covers for the first time the whole variety of interdependent subjects contributing to green photonics and electronics, serving communication and energy harvesting. Alternative approaches to generate electric power using organic photovoltaic solar cells, inexpensive and again energy efficient in production are summarized. In 2015, the use of the internet consumed 5-6% of the raw electricity production in developed countries. Power consumption increases rapidly and without some transformational change will use, by the middle of the next decade at the latest, the entire electricity production. This apocalyptic outlook led to a redirection of the focus of data center and HPC developers from just increasing bit rates and capacities to energy efficiency. The high speed interconnects are all based on photonic devices. These must and can be energy efficient but they operate in an electronic environment and therefore have to be considered in a wide scope that also requires low energy electronic devices, sophisticated circuit designs and clever architectures. The development of the next generation of high performance exaFLOP computers suffers from the same problem: Their energy consumption based on present device generations is essentially prohibitive.

Gadi Eisenstein holds the Seiden chair in Optoelectronics and is the director of the Russel Berrie nanotechnology Institute at Technion. He received his PhD in 1980 from the University of Minnesota and then joined the AT&T Bell Laboratory Crawford Hill Research Laboratory where he worked for 10 years at the Photonic Circuits department before joining Technion in 1989. Professor Eisenstein was a guest professor at the University of Minnesota from 1997 till 1999. He was awarded the Alexander von Humboldt Award in 2007 at the Technical University Berlin where he has spent a sabbatical leave as guest Professor in 2011. In 2012 he was invited back to TU-Berlin as a return Humboldt Awardee. In 2012, he was elected Foreign Member at The Istituto Veneto di Scienze, Lettere ed Arti-a prestigious Venetian academy and in 2014, he received the William Streifer Award of the IEEE for seminal contributions to dynamics and noise properties of semiconductor lasers.Dieter H. Bimberg received the Diploma in physics and the Ph.D. degree from Goethe University, Frankfurt, in 1968 and 1971, respectively. From 1972 to 1979 he held a Principal Scientist position at the Max Planck-Institute for Solid State Research in Grenoble/France and Stuttgart. In 1979 he was appointed as Professor of Electrical Engineering, Technical University of Aachen.Since 1981 he holds the Chair of Applied Solid State Physics at Technical University of Berlin. He was elected in 1990 Excecutive Director of the Solid State Physics Institute at TU Berlin, a position he hold until 2011. Since 2004 he is director of the Center of Nanophotonics at TU Berlin. From 2006 -2011 he was the chairman of the board of the German Federal Government Centers of Excellence in Nanotechnologies.His honors include the Russian State Prize in Science and Technology 2001, his election to the German Academy of Sciences Leopoldina in 2004, to the Russian Academy of Sciences in 2011 and to the US National Academy of Engineering in 2014, as Fellow of the American Physical Society and IEEE in 2004 and 2010, respectively, the Max-Born-Award and Medal 2006, awarded jointly by IoP and DPG, the William Streifer Award of the Photonics Society of IEEE in 2010, the UNESCO Nanoscience Medal 2012 and the Heinrich-Welker Award and Medal 2015. In 2015 he received a D. sc h. c. from the University of Lancaster.His scientific work was leading to more than 1400 publications, more than 25 patents, and 6 books resulting in more than 40,000 citations worldwide and a Hirsch factor of 95. His research interests include the growth and physics of nanostructures and nanophotonic devices, ultrahigh speed and energy efficient photonic devices for future datacom systems, single/entangled photon emitters for quantum cryptography and ultimate nanomemories based on quantum dots.

Eisenstein / Bimberg Green Photonics and Electronics jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Contents;8
3;Contributors;13
4;1 Energy-Efficient Vertical-Cavity Surface-Emitting Lasers for Optical Interconnects;15
4.1;Abstract;15
4.2;1.1 VCSEL Energy Efficiency;15
4.3;1.2 Energy Efficiency Figures of Merit;16
4.4;1.3 Resonance Frequency and Modulation Bandwidth;18
4.5;1.4 Energy Efficiency Analysis;21
4.6;1.5 Energy Efficient Data Transmission Results;24
4.7;1.6 Summary;27
4.8;References;28
5;2 High-Speed InP-Based Long-Wavelength VCSELs;30
5.1;Abstract;30
5.2;2.1 InP-Based VCSELs;31
5.2.1;2.1.1 Active Region;31
5.2.2;2.1.2 Hybrid-Cavity Concepts;32
5.2.3;2.1.3 Tunnel-Junction Laser;35
5.3;2.2 Single-Mode 1.55-µm Short-Cavity VCSELs;36
5.3.1;2.2.1 Hybrid Dielectric-Semiconductor VCSELs;37
5.3.2;2.2.2 Stationary Characteristics;38
5.3.3;2.2.3 Dynamic Characteristics;41
5.4;2.3 VCSEL Arrays and Advanced Modulation Formats;42
5.4.1;2.3.1 Data Communication;42
5.4.2;2.3.2 Telecommunication;44
5.5;2.4 Conclusion;45
5.6;Acknowledgements;46
5.7;References;46
6;3 Quantum-Dot Semiconductor Optical Amplifiers for Energy-Efficient Optical Communication;49
6.1;Abstract;49
6.2;3.1 Introduction;50
6.3;3.2 Basics of Quantum-Dot Semiconductor Optical Amplifiers;52
6.3.1;3.2.1 Parameters of SOAs;52
6.3.1.1;3.2.1.1 Gain;52
6.3.1.2;3.2.1.2 Gain Saturation—Saturation Power;52
6.3.1.3;3.2.1.3 Gain Bandwidth;53
6.3.1.4;3.2.1.4 Polarization Dependent Gain;53
6.3.1.5;3.2.1.5 Noise Figure;53
6.3.2;3.2.2 Dynamics of Conventional and QD SOAs;54
6.3.3;3.2.3 Design and Static Characteristics of QD SOAs;56
6.3.3.1;3.2.3.1 Design;56
6.3.4;3.2.4 QD SOA Sample Series;57
6.4;3.3 Phase Modulation of QD SOAs;58
6.4.1;3.3.1 Introduction of the Concept;58
6.4.2;3.3.2 Prove of the Concept;59
6.5;3.4 Concept of Dual-Communication-Band Amplifiers;63
6.5.1;3.4.1 Introduction of the Concept;63
6.5.2;3.4.2 Proof of Concept;64
6.6;3.5 Signal Processing—Wavelength Conversion;68
6.6.1;3.5.1 Non-linearities of SOA Gain Media;69
6.6.2;3.5.2 Four-Wave Mixing in QD SOAs;70
6.6.2.1;3.5.2.1 Definition of Parameters;71
6.6.2.2;3.5.2.2 Dual-Pump FWM;72
6.6.3;3.5.3 Optimization of Static Four-Wave Mixing in QD SOAs;73
6.6.3.1;3.5.3.1 Detuning;73
6.6.3.2;3.5.3.2 Input Power;74
6.6.3.3;3.5.3.3 Gain via QD SOA Length;74
6.6.3.4;3.5.3.4 Detuning Dependence for Dual-Pump Configuration;75
6.6.4;3.5.4 FWM of D(Q)PSK Signals;76
6.6.4.1;3.5.4.1 Single-Pump FWM;77
6.6.4.2;3.5.4.2 Dual-Pump FWM;78
6.7;3.6 Summary;80
6.8;Acknowledgements;80
6.9;References;80
7;4 Quantum-Dot Mode-Locked Lasers: Sources for Tunable Optical and Electrical Pulse Combs;87
7.1;Abstract;87
7.2;4.1 Quantum-Dot Mode-Locked Lasers;87
7.2.1;4.1.1 Device Structures;88
7.2.2;4.1.2 Passive Mode-Locking;89
7.3;4.2 Jitter Reduction and Frequency Tuning;91
7.3.1;4.2.1 Hybrid Mode-Locking;93
7.3.2;4.2.2 Optical Injection;96
7.3.3;4.2.3 Optical Self-Feedback;98
7.4;4.3 Applications;103
7.4.1;4.3.1 Millimeter-Wave-Signal Generation;103
7.4.2;4.3.2 Optical Communication;108
7.4.2.1;4.3.2.1 On-Off Keying;109
7.4.2.2;4.3.2.2 Differential (Quadrature) Phase-Shift Keying;111
7.5;4.4 Conclusion;113
7.6;Acknowledgements;113
7.7;References;113
8;5 Nanophotonic Approach to Energy-Efficient Ultra-Fast All-Optical Gates;119
8.1;5.1 Introduction: A Case for All-Optical Signal Processing;119
8.2;5.2 Integrated All-Optical Gate;121
8.2.1;5.2.1 Technologies for Integrated On-Chip All-Optical Processing;121
8.2.2;5.2.2 Energy-Efficient All-Optical Gates;123
8.2.3;5.2.3 III--V Photonic Crystals Resonators;125
8.3;5.3 Nonlinear Dynamics in PhC Resonators;127
8.3.1;5.3.1 Microwatt Nonlinear Response;127
8.3.2;5.3.2 Fast Optical Nonlinearities in Semiconductors;128
8.3.3;5.3.3 Nonlocal Nonlinear Response of PhC Cavities;130
8.4;5.4 PhC All-Optical Gate;130
8.4.1;5.4.1 Photon Molecule;133
8.4.2;5.4.2 The Role of the Carrier Lifetime;133
8.4.3;5.4.3 InP;135
8.4.4;5.4.4 P-Doped InP;136
8.4.5;5.4.5 Passivated GaAs;138
8.4.6;5.4.6 Integration with Silicon Photonics;140
8.5;5.5 Application Example: All-Optical Signal Sampling;141
8.5.1;5.5.1 All-Optical Sampling;142
8.6;5.6 Conclusions;145
8.7;References;145
9;6 Alternative Logic Families for Energy-Efficient and High Performance Chip Design;150
9.1;Abstract;150
9.2;6.1 Introduction;150
9.3;6.2 Background;152
9.4;6.3 DML Basics;166
9.5;6.4 DML Utilization for Increased E-D Flexibility;169
9.6;6.5 Summary;178
9.7;References;178
10;7 Secure Power Management and Delivery Within Intelligent Power Networks on-Chip;184
10.1;7.1 Power Network on-Chip for Distributed Power Delivery and Management;187
10.1.1;7.1.1 Concept of Power Network-on-Chip;188
10.1.2;7.1.2 Power Network-on-Chip Architecture;188
10.1.3;7.1.3 Challenges in Distributed Power Delivery;191
10.2;7.2 Power Routing in SoCs;192
10.2.1;7.2.1 Power Routers;192
10.2.2;7.2.2 Locally Powered Loads;193
10.2.3;7.2.3 Power Grid;193
10.2.4;7.2.4 Case Study;194
10.3;7.3 Stable Distributed Power Delivery Systems;196
10.3.1;7.3.1 Experimental Evaluation of Stability Criterion;198
10.4;7.4 Secure Power Delivery and Management;202
10.5;7.5 Automated Design of Stable Power Delivery Systems;202
10.6;7.6 Summary;207
10.7;References;209
11;8 Energy Efficient System Architectures;213
11.1;Abstract;213
11.2;8.1 Power Issues in Computing Systems;213
11.3;8.2 Characteristics of the Power Reduction Problem;214
11.3.1;8.2.1 The Disruption Principle;214
11.3.2;8.2.2 The Locality Principle;215
11.3.3;8.2.3 The Challenge of Parallelism;218
11.3.4;8.2.4 A Unified Machine Model;220
11.3.5;8.2.5 Memory Intensive Systems;221
11.3.6;8.2.6 Applying the Principles in Large Data Center Computing;223
11.4;References;223
12;9 Low-Cost Harvesting of Solar Energy: The Future of Global Photovoltaics;225
12.1;Abstract;225
12.2;9.1 Introduction: The Needed Transformation of Our Energy System, Limited Fossil Fuels, the Climate Problem;225
12.3;9.2 The Role of Photovoltaics in Our Future Energy System, Based on Simulation of the German Energy System for 80% and More of Renewable Energy;229
12.4;9.3 Crystalline Silicon Photovoltaics;238
12.4.1;9.3.1 Al-Back Surface Field Technology;240
12.4.2;9.3.2 Partial Rear Contact Technologies (PRC, PERC, PERL, PERT);240
12.4.3;9.3.3 Solar Cells on n-type Si;243
12.4.4;9.3.4 Heterojunction Solar Cells;243
12.4.5;9.3.5 Crystalline Si PV Beyond the Shockley-Queisser Limit;245
12.5;9.4 High-Concentration PV: CPV Technology;246
12.6;9.5 Thin Film PV Technologies;255
12.6.1;9.5.1 Thin Film Silicon Solar Cells;257
12.6.1.1;9.5.1.1 Amorphous Silicon;257
12.6.1.2;9.5.1.2 Microcrystalline Silicon;258
12.6.1.3;9.5.1.3 Multijunction Solar Cells;258
12.6.2;9.5.2 Cupper Indium Diselenide (CIS) Solar Cells;259
12.6.3;9.5.3 Cadmium Telluride Solar Cells;260
12.7;9.6 The Future of PV: Further Market Development, PV Going into the Terawatt Range;260
13;10 Novel Thin-Film Photovoltaics—Status and Perspectives;272
13.1;Abstract;272
13.2;10.1 Introduction: Status of Photovoltaics in General;272
13.3;10.2 Organic Photovoltaics;275
13.3.1;10.2.1 Basics of Organic Photovoltaics;275
13.3.2;10.2.2 Thin Film Optics and Interference;280
13.3.3;10.2.3 Morphology of the Blend Layer;281
13.3.4;10.2.4 Optimized p-i-n Cells;283
13.3.5;10.2.5 Tandem and Multi-junction Cells—Maximizing the Power Output;284
13.4;10.3 Perovskite Photovoltaics;287
13.5;10.4 Application of Different Solar Cell Technologies;288
13.5.1;10.4.1 Application Scenarios;288
13.5.2;10.4.2 Energy Harvesting Under Real Application Conditions;290
13.6;10.5 Conclusion;294
13.7;References;294
14;Index;297



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.