E-Book, Englisch, 219 Seiten
Eichel Electrochemical Energy Storage
1. Auflage 2019
ISBN: 978-3-030-26130-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Next Generation Battery Concepts
E-Book, Englisch, 219 Seiten
Reihe: Topics in Current Chemistry Collections
ISBN: 978-3-030-26130-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience.
Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;6
2;Preface;7
3;Synergistic Effect of Blended Components in Nonaqueous Electrolytes for Lithium Ion Batteries;9
3.1;Abstract;9
3.2;1 Introduction;10
3.3;2 Solvent Blends in Nonaqueous Electrolytes;12
3.3.1;2.1 Nitrile-Based and Ionic Liquid-Based Solvent Blends;13
3.3.1.1;2.1.1 Aim of Solvent Blending;13
3.3.2;2.2 Effect of Blending on Physicochemical Features;16
3.3.3;2.3 Effect of Blending on Electrochemical Performance;20
3.3.3.1;2.3.1 Cycling Performance and Electrochemical Stability;20
3.3.3.2;2.3.2 Aluminum Dissolution in Presence of Nitriles;23
3.3.4;2.4 Summary;26
3.4;3 Blended Conducting Salts in Nonaqueous Electrolytes;26
3.4.1;3.1 Aim of Blending Lithium Salts;31
3.4.2;3.2 Physicochemical Features of Blended Salt-Based Electrolytes;31
3.4.2.1;3.2.1 Transport Properties: Viscosity and Conductivity;31
3.4.2.2;3.2.2 Thermal Stability of Blended Salt-Based Electrolytes;34
3.4.3;3.3 Electrochemical Features of Blended Salt-Based Electrolytes;36
3.4.3.1;3.3.1 Cathodic Stability of Blended Salt-Based Electrolytes;36
3.4.3.2;3.3.2 Anodic Stability of the Blended Salt-Based Electrolytes;38
3.4.3.3;3.3.3 C-Rate Capability and Capacity Retention of the Blended Salt-Based Electrolytes;41
3.4.3.4;3.3.4 Suppression of Aluminum Dissolution by Blended Salt-Based Electrolytes;42
3.4.4;3.4 Summary;44
3.5;4 Blended Additive Containing Electrolytes;44
3.5.1;4.1 Safety Protection Agents;44
3.5.1.1;4.1.1 Flame Retardant Additive Blends;44
3.5.1.2;4.1.2 Overcharge Protection Additive Blends;48
3.5.2;4.2 SEI and CEI Film-Forming Additive Blends;51
3.5.3;4.3 Blended Electrolytes with Salt Stabilizer Additives;62
3.5.4;4.4 Summary;63
3.6;5 Concluding Remarks and Perspectives;63
3.7;References;66
4;High-Power-Density Organic Radical Batteries;73
4.1;Abstract;73
4.2;1 Introduction;74
4.3;2 Basic Concepts of Thin-Film Batteries;75
4.3.1;2.1 Battery Setup and Housing;77
4.3.2;2.2 Characteristics;78
4.4;3 Active Materials;80
4.4.1;3.1 TEMPO;81
4.4.2;3.2 Other Nitroxide Radicals;92
4.4.3;3.3 Other Radicals;98
4.5;4 Non-Active Materials;99
4.5.1;4.1 Conductive Additive and Binder;99
4.5.2;4.2 Electrolytes;100
4.6;5 Concluding Remarks;101
4.7;References;102
5;Cell Concepts of Metal--Sulfur Batteries (Metal = Li, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications;108
5.1;Abstract;108
5.2;1 Introduction;109
5.2.1;1.1 Sulfur as Active Material for Electrochemical Energy Storage: Motivation;109
5.3;2 Cell Concepts;115
5.3.1;2.1 Conventional Design with Additional Membrane;115
5.3.2;2.2 Polysulfide Cell Concept;117
5.3.3;2.3 All-Solid-State Cell Concept;119
5.3.4;2.4 High-Temperature Concept;122
5.4;3 Challenges of Metal-Negative Electrodes;125
5.5;4 Aspects of Magnesium--Sulfur and Potassium--Sulfur Cells;126
5.6;5 Conclusions;127
5.7;Acknowledgements;128
5.8;References;128
6;Challenges and Prospect of Non-aqueous Non-alkali (NANA) Metal--Air Batteries;133
6.1;Abstract;133
6.2;1 Introduction;134
6.3;2 Non-aqueous Non-alkali (NANA) Metal--Air Batteries Research Objectives;135
6.4;3 Nonaqueous Mg--Air Batteries;136
6.4.1;3.1 Introduction;136
6.4.2;3.2 Liquid-Based Cells;137
6.4.2.1;3.2.1 Organic-Based Electrolytes;137
6.4.2.1.1;3.2.1.1 Organic Solutions with Regular Mg Salts;138
6.4.2.1.2;3.2.1.2 Ether Solutions with Organo-Magnesium Compounds;140
6.4.2.1.3;3.2.1.3 Iodine-based electrolytes;142
6.4.2.2;3.2.2 Room-Temperature Ionic Liquids (RTILs)-Based Electrolytes;145
6.4.2.2.1;3.2.2.1 Grignard Reagents;146
6.4.2.2.2;3.2.2.2 Phosphonium Chloride Ionic Liquid;148
6.4.3;3.3 Polymer Electrolytes;148
6.4.4;3.4 All Solid-State Cells;149
6.5;4 Nonaqueous Al--Air Batteries;151
6.5.1;4.3 Introduction;151
6.5.2;4.2 Liquid-Based Cells;152
6.5.2.1;4.2.1 Alcohols;152
6.5.2.2;4.2.2 Ionic Liquid Electrolytes;152
6.5.2.2.1;4.2.2.1 Chloroaluminate Ionic Liquids;152
6.5.2.2.2;4.2.2.2 Alternative Ionic Liquids;153
6.5.3;4.3 All Solid-State Cell;155
6.6;5 Nonaqueous Silicon–Air Batteries;156
6.6.1;5.1 Introduction;156
6.6.2;5.2 Liquid-Based Cells;156
6.6.3;5.3 Gel Polymer-Based Electrolyte;159
6.6.4;5.4 All Solid-State Cells;161
6.7;6 An Overview: Conclusions and Perspective;163
6.7.1;6.1 General;163
6.7.2;6.2 Magnesium--Air Battery System;163
6.7.3;6.3 Aluminum--Air Battery System;164
6.7.4;6.4 Silicon--Air Battery System;164
6.7.5;6.5 All Solid-State Metal--Air Battery Systems;164
6.7.6;6.6 Full Cell Comparison;169
6.8;Acknowledgements;169
6.9;References;169
7;Challenges Considering the Degradation of Cell Components in Commercial Lithium-Ion Cells: A Review and Evaluation of Present Systems;175
7.1;Abstract;175
7.2;1 Introduction;176
7.3;2 Results and Discussion;178
7.3.1;2.1 Basic Electrochemistry;178
7.3.2;2.2 Material Issues Related to Degradation;181
7.3.2.1;2.2.1 SEI Growth/Reorganization;182
7.3.2.2;2.2.2 Self Discharge;183
7.3.2.3;2.2.3 Exfoliation;184
7.3.2.4;2.2.4 Li-Dendrite Formation;187
7.3.2.5;2.2.5 Electrolyte Decomposition;189
7.3.2.6;2.2.6 Loss of Porosity;191
7.3.2.7;2.2.7 Transition-Metal Dissolution;192
7.3.2.8;2.2.8 Binder Decomposition;193
7.3.2.9;2.2.9 Cracks;195
7.3.2.10;2.2.10 Structural Changes;197
7.3.2.11;2.2.11 Changes in the Electronic Structure;201
7.3.2.12;2.2.12 Surface-Near Composition Changes;205
7.3.3;2.3 Capacity Loss in Full Cells;206
7.3.4;2.4 Degradation as a Safety Risk;211
7.4;3 Summary and Outlook;213
7.5;References;213




