Buch, Englisch, 326 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 528 g
Buch, Englisch, 326 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 528 g
Reihe: Springer Series in Materials Science
ISBN: 978-3-642-26389-7
Verlag: Springer
Semiconductor materials have been studied intensively since the birth of silicon technology more than 50 years ago. The ability to physically and chemically t- lor their properties with precision is the key factor responsible for the electronic revolution in our society over the past few decades. Semiconductor material s- tems (like silicon and GaAs-related materials) have now matured and found well established applications in electronics, optoelectronics, and several other ?elds. Other materials such as III-Nitrides were developed later, in response to needs that the above mentioned semiconductors were unable to ful?ll. The properties of I- nitrides (AlN, GaN InN, and related alloy systems) make them an excellent choice for ef?cient light emitters in the visible as well as the UV region, UV detectors, and for a variety of electronic device such as high frequency unipolar power devices. There was a major upsurgein the research of the GaN material system around1970.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Elektronik, Optik
- Naturwissenschaften Physik Elektromagnetismus Halbleiter- und Supraleiterphysik
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Werkstoffkunde, Materialwissenschaft: Forschungsmethoden
- Naturwissenschaften Physik Thermodynamik Festkörperphysik, Kondensierte Materie
Weitere Infos & Material
Market for Bulk GaN Crystals.- Development of the Bulk GaN Substrate Market.- Vapor Phase Growth Technology.- Hydride Vapor Phase Epitaxy of GaN.- Growth of Bulk GaN Crystals by HVPE on Single Crystalline GaN Seeds.- Freestanding GaN Wafers by Hydride Vapor Phase Epitaxy Using Void-Assisted Separation Technology.- Nonpolar and Semipolar GaN Growth by HVPE.- High Growth Rate MOVPE.- Solution Growth Technology.- Ammonothermal Growth of GaN Under Ammono-Basic Conditions.- A Pathway Toward Bulk Growth of GaN by the Ammonothermal Method.- Acidic Ammonothermal Growth Technology for GaN.- Flux Growth Technology.- High Pressure Solution Growth of Gallium Nitride.- A Brief Review on the Na-Flux Method Toward Growth of Large-Size GaN Crystal.- Low Pressure Solution Growth of Gallium Nitride.- Characterization of GaN Crystals.- Optical Properties of GaN Substrates.- Point Defects and Impurities in Bulk GaN Studied by Positron Annihilation Spectroscopy.