E-Book, Englisch, Band 93, 353 Seiten, eBook
Egorov / Schulze Pseudo-Differential Operators, Singularities, Applications
Erscheinungsjahr 2012
ISBN: 978-3-0348-8900-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 93, 353 Seiten, eBook
Reihe: Operator Theory: Advances and Applications
ISBN: 978-3-0348-8900-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1 Sobolev spaces.- 1.1 Fourier transform.- 1.2 The first definition of the Sobolev space.- 1.3 General definition of Sobolev spaces in ?n.- 1.4 Representation of a linear functional over Hs.- 1.5 Embedding theorems.- 1.6 Sobolev spaces in a domain.- 2 Pseudo-differential Operators.- 2.1 The algebra of differential operators.- 2.2 Basic properties of pseudo-differential operators.- 2.3 Calculus of pseudo-differential operators.- 2.4 Pseudo-differential operators on closed manifolds.- 2.5 Gårding inequality.- 3 Elliptic pseudo-differential operators.- 3.1 Parametrices of the elliptic operators.- 3.2 Elliptic operators on a manifold.- 4 Elliptic boundary value problems.- 4.1 Model elliptic boundary value problems.- 4.2 Elliptic boundary value problems in a domain.- 5 Kondratiev’s theory.- 5.1 A model problem.- 5.2 The general problem.- 5.3 The boundary value problem in an infinite cone for operators with constant coefficients.- 5.4 Equations with variable coefficients in an infinite cone.- 5.5 The boundary value problem in a bounded domain.- 6 Non-elliptic operators; propagation of singularities.- 6.1 Canonical transformations and Fourier integral operators.- 6.2 Wave fronts of distributions.- 6.3 Wave fronts and Fourier integral operators.- 6.4 Propagation of singularities.- 6.5 The Cauchy problem for a strongly hyperbolic equation.- 7 Pseudo-differential operators on manifolds with conical and edge singularities; motivation and technical preparations.- 7.1 The general background.- 7.2 Parameter-dependent pseudo-differential operators and operator-valued Mellin symbols.- 8 Pseudo-differential operators on manifolds with conical singularities.- 8.1 The cone algebra with asymptotics.- 8.2 The algebra on the infinite cone.- 9 Pseudo-differential operators on manifoldswith edges.- 9.1 Pseudo-differential operators with operator-valued symbols.- 9.2 The edge symbolic calculus.- 9.3 Edge pseudo-differential operators.- 9.4 Applications, examples and remarks.