Edwards | Adversarial Machine Learning | Buch | 978-1-394-40203-8 | sack.de

Buch, Englisch, 336 Seiten

Edwards

Adversarial Machine Learning

Mechanisms, Vulnerabilities, and Strategies for Trustworthy AI
1. Auflage 2026
ISBN: 978-1-394-40203-8
Verlag: John Wiley & Sons Inc

Mechanisms, Vulnerabilities, and Strategies for Trustworthy AI

Buch, Englisch, 336 Seiten

ISBN: 978-1-394-40203-8
Verlag: John Wiley & Sons Inc


Enables readers to understand the full lifecycle of adversarial machine learning (AML) and how AI models can be compromised

Adversarial Machine Learning is a definitive guide to one of the most urgent challenges in artificial intelligence today: how to secure machine learning systems against adversarial threats.

This book explores the full lifecycle of adversarial machine learning (AML), providing a structured, real-world understanding of how AI models can be compromised—and what can be done about it.

The book walks readers through the different phases of the machine learning pipeline, showing how attacks emerge during training, deployment, and inference. It breaks down adversarial threats into clear categories based on attacker goals—whether to disrupt system availability, tamper with outputs, or leak private information. With clarity and technical rigor, it dissects the tools, knowledge, and access attackers need to exploit AI systems.

In addition to diagnosing threats, the book provides a robust overview of defense strategies—from adversarial training and certified defenses to privacy-preserving machine learning and risk-aware system design. Each defense is discussed alongside its limitations, trade-offs, and real-world applicability.

In Adversarial Machine Learning, readers will gain a comprehensive view of today’s most dangerous attack methods: - Evasion attacks that manipulate inputs to deceive AI predictions

- Poisoning attacks that corrupt training data or model updates

- Backdoor and trojan attacks that embed malicious triggers
- Privacy attacks that reveal sensitive data through model interaction and prompt injection
- Generative AI attacks that exploit the new wave of large language models

Blending technical depth with practical insight, Adversarial Machine Learning equips developers, security engineers, and AI decision-makers with the knowledge they need to understand the adversarial landscape and defend their systems with confidence.

Edwards Adversarial Machine Learning jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Jason Edwards, DM, CISSP, is an accomplished cybersecurity leader with extensive experience in the technology, finance, insurance, and energy sectors. Holding a Doctorate in Management, Information Systems, and Technology, Jason specializes in guiding large public and private companies through complex cybersecurity challenges. His career includes leadership roles across the military, insurance, finance, energy, and technology industries. He is a husband, father, former military cyber officer, adjunct professor, avid reader, dog dad, and popular on LinkedIn.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.