E-Book, Englisch, 296 Seiten
Reihe: Computer Science (R0)
Ebert / Dumke / Bundschuh Best Practices in Software Measurement
1. Auflage 2005
ISBN: 978-3-540-26734-8
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark
How to use metrics to improve project and process performance
E-Book, Englisch, 296 Seiten
Reihe: Computer Science (R0)
ISBN: 978-3-540-26734-8
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;7
2;1 Introduction;12
3;2 Making Metrics a Success – The Business Perspective;20
3.1;2.1 The Business Need for Measurement;20
3.2;2.2 Managing by the Numbers;24
3.2.1;2.2.1 Extraction;24
3.2.2;2.2.2 Evaluation;28
3.2.3;2.2.3 Execution;31
3.3;2.3 Metrics for Management Guidance;33
3.3.1;2.3.1 Portfolio Management;33
3.3.2;2.3.2 Technology Management;35
3.3.3;2.3.3 Product and Release Planning;37
3.3.4;2.3.4 Making the Business Case;38
3.4;2.4 Hints for the Practitioner;40
3.5;2.5 Summary;43
4;3 Planning the Measurement Process;46
4.1;3.1 Software Measurement Needs Planning;46
4.2;3.2 Goal-Oriented Approaches;47
4.2.1;3.2.1 The GQM Methodology;47
4.2.2;3.2.2 The CAME Approach;49
4.3;3.3 Measurement Choice;51
4.4;3.4 Measurement Adjustment;53
4.5;3.5 Measurement Migration;54
4.6;3.6 Measurement Efficiency;56
4.7;3.7 Hints for the Practitioner;56
4.8;3.8 Summary;58
5;4 Performing the Measurement Process;59
5.1;4.1 Measurement Tools and Software e-Measurement;59
5.2;4.2 Applications and Strategies of Metrics Tools;60
5.2.1;4.2.1 Software process measurement and evaluation;60
5.2.2;4.2.2 Software Product Measurement and Evaluation;61
5.2.3;4.2.3 Software Process Resource Measurement and Evaluation;64
5.2.4;4.2.4 Software Measurement Presentation and Statistical Analysis;64
5.2.5;4.2.5 Software Measurement Training;65
5.3;4.3 Solutions and Directions in Software e-Measurement;66
5.4;4.4 Hints for the Practitioner;71
5.5;4.5 Summary;72
6;5 Introducing a Measurement Program;73
6.1;5.1 Making the Measurement Program Useful;73
6.2;5.2 Metrics Selection and Definition;73
6.3;5.3 Roles and Responsibilities in a Measurement Program;76
6.4;5.4 Building History Data;78
6.5;5.5 Positive and Negative Aspects of Software Measurement;79
6.6;5.6 It is People not Numbers!;82
6.7;5.7 Counter the Counterarguments;84
6.8;5.8 Information and Participation;85
6.9;5.9 Hints for the Practitioner;86
6.10;5.10 Summary;89
7;6 Measurement Infrastructures;90
7.1;6.1 Access to Measurement Results;90
7.2;6.2 Introduction and Requirements;90
7.2.1;6.2.1 Motivation: Using Measurements for Benchmarking;90
7.2.2;6.2.2 Source of Metrics;91
7.2.3;6.2.3 Dimensions of a Metrics Database;92
7.2.4;6.2.4 Requirements of a Metrics Database;93
7.3;6.3 Case Study: Metrics Database for Object-Oriented Metrics;95
7.3.1;6.3.1 Prerequisites for the Effective Use of Metrics;95
7.3.2;6.3.2 Architecture and Design of the Application;96
7.3.3;6.3.3 Details of the Implementation;97
7.3.4;6.3.4 Functionality of the Metrics Database (Users’ View);99
7.4;6.4 Hints for the Practitioner;102
7.5;6.5 Summary;103
8;7 Size and Effort Estimation;104
8.1;7.1 The Importance of Size and Cost Estimation;104
8.2;7.2 A Short Overview of Functional Size Measurement Methods;105
8.3;7.3 The COSMIC Full Function Point Method;109
8.4;7.4 Case Study: Using the COSMIC Full Function Point Method;112
8.5;7.5 Estimations Can Be Political;115
8.6;7.6 Establishing Buy-In: The Estimation Conference;116
8.7;7.7 Estimation Honesty;117
8.8;7.8 Estimation Culture;117
8.9;7.9 The Implementation of Estimation;118
8.10;7.10 Estimation Competence Center;120
8.11;7.11 Training for Estimation;122
8.12;7.12 Hints for the Practitioner;122
8.13;7.13 Summary;123
9;8 Project Control;124
9.1;8.1 Project Control and Software Measurement;124
9.2;8.2 Applications of Project Control;127
9.2.1;8.2.1 Monitoring and Control;127
9.2.2;8.2.2 Forecasting;133
9.2.3;8.2.3 Cost Control;135
9.3;8.3 Hints for the Practitioner;139
9.4;8.4 Summary;140
10;9 Defect Detection and Quality Improvement;142
10.1;9.1 Improving Quality of Software Systems;142
10.2;9.2 Fundamental Concepts;144
10.2.1;9.2.1 Defect Estimation;144
10.2.2;9.2.3 Defect Detection, Quality Gates and Reporting;146
10.3;9.3 Early Defect Detection;147
10.3.1;9.3.1 Reducing Cost of Non-Quality;147
10.3.2;9.3.2 Planning Early Defect Detection Activities;149
10.4;9.4 Criticality Prediction – Applying Empirical Software Engineering;151
10.4.1;9.4.1 Identifying Critical Components;151
10.4.2;9.4.2 Practical Criticality Prediction;153
10.5;9.5 Software Reliability Prediction;155
10.5.1;9.5.1 Practical Software Reliability Engineering;155
10.5.2;9.5.2 Applying Reliability Growth Models;157
10.6;9.6 Calculating ROI of Quality Initiatives;159
10.7;9.7 Hints for the Practitioner;163
10.8;9.8 Summary;164
11;10 Software Process Improvement;166
11.1;10.1 Process Management and Process Improvement;166
11.2;10.2 Software Process Improvement;169
11.2.1;10.2.1 Making Change Happen;169
11.2.2;10.2.2 Setting Reachable Targets;172
11.2.3;10.2.3 Providing Feedback;175
11.2.4;10.2.4 Practically Speaking: Implementing Change;177
11.2.5;10.2.5 Critical Success Factors;178
11.3;10.3 Process Management;179
11.3.1;10.3.1 Process Definition and Workflow Management;179
11.3.2;10.3.2 Quantitative Process Management;182
11.3.3;10.3.3 Process Change Management;183
11.4;10.4 Measuring the Results of Process Improvements;184
11.5;10.5 Hints for the Practitioner;186
11.6;10.6 Summary;188
12;11 Software Performance Engineering;190
12.1;11.1 The Method of Software Performance Engineering;190
12.2;11.2 Motivation, Requirements and Goals;192
12.2.1;11.2.1 Performance-related Risk of Software Systems;192
12.2.2;11.2.2 Requirements and Aims;193
12.3;11.3 A Practical Approach of Software Performance Engineering;194
12.3.1;11.3.1 Overview of an Integrated Approach;194
12.3.2;11.3.2 Establishing and Resolving Performance Models;194
12.3.3;11.3.3 Generalization of the Need for Model Variables;196
12.3.4;11.3.4 Sources of Model Variables;198
12.3.5;11.3.5 Performance and Software Metrics;199
12.3.6;11.3.6 Persistence of Software and Performance Metrics;201
12.4;11.4 Case Study: EAI;202
12.4.1;11.4.1 Introduction of a EAI Solution;202
12.4.2;11.4.2 Available Studies;203
12.4.3;11.4.3 Developing EAI to Meet Performance Needs;204
12.5;11.5 Costs of Software Performance Engineering;207
12.5.1;11.5.1 Performance Risk Model (PRM);207
12.6;11.6 Hints for the Practitioner;208
12.7;11.7 Summary;210
13;12 Service Level Management;211
13.1;12.1 Measuring Service Level Management;211
13.2;12.2 Web Services and Service Management;212
13.2.1;12.2.1 Web Services at a Glance;212
13.2.2;12.2.2 Overview of SLAs;214
13.2.3;12.2.3 Service Agreement and Service Provision;215
13.3;12.3 Web Service Level Agreements;217
13.3.1;12.3.1 WSLA Schema Specification;217
13.3.2;12.3.2 Web Services Run-Time Environment;218
13.3.3;12.3.3 Guaranteeing Web Service Level Agreements;219
13.3.4;12.3.4 Monitoring the SLA Parameters;220
13.3.5;12.3.5 Use of a Measurement Service;221
13.4;12.4 Hints for the Practitioner;222
13.5;12.5 Summary;224
14;13 Case Study: Building an Intranet Measurement Application;225
14.1;13.1 Applying Measurement Tools;225
14.2;13.2 The White-Box Software Estimation Approach;226
14.3;13.3 First Web-Based Approach;229
14.4;13.4 Second Web-Based Approach;230
14.5;13.5 Hints for the Practitioner;231
14.6;13.6 Summary;231
15;14 Case Study: Measurements in IT Projects;233
15.1;14.1 Estimations: A Start for a Measurement Program;233
15.2;14.2 Environment;234
15.2.1;14.2.1 The IT Organization;234
15.2.2;14.2.2 Function Point Project Baseline;234
15.3;14.3 Function Point Prognosis;237
15.4;14.4 Conclusions from Case Study;238
15.4.1;14.4.1 Counting and Accounting;238
15.4.2;14.4.2 ISO 8402 Quality Measures and IFPUG GSCs;239
15.4.3;14.4.3 Distribution of Estimated Effort to Project Phases;241
15.4.4;14.4.4 Estimation of Maintenance Tasks;242
15.4.5;14.4.5 The UKSMA and NESMA Standard;243
15.4.6;14.4.6 Enhancement Projects;244
15.4.7;14.4.7 Software Metrics for Maintenance;245
15.4.8;14.4.8 Estimation of Maintenance Effort After Delivery;246
15.4.9;14.4.9 Estimation for (Single) Maintenance Tasks;247
15.4.10;14.4.10 Simulations for Estimations;247
15.4.11;14.4.11 Sensitivity analysis.;249
15.5;14.5 Hints for the Practitioner;249
15.6;14.6 Summary;250
16;15 Case Study: Metrics in Maintenance;251
16.1;15.1 Motivation for a Tool-based Approach;251
16.2;15.2 The Software System under Investigation;252
16.3;15.3 Quality Evaluation with Logiscope;253
16.4;15.4 Application of Static Source Code Analysis;259
16.5;15.5 Hints for the Practitioner;262
16.6;15.6 Summary;264
17;16 Metrics Communities and Resources;266
17.1;16.1 Benefits of Networking;266
17.2;16.2 CMG;266
17.3;16.4 COSMIC;267
17.4;16.6 German GI Interest Group on Software Metrics;268
17.5;16.7 IFPUG;268
17.6;16.8 ISBSG;269
17.7;16.9 ISO;272
17.8;16.10 SPEC;273
17.9;16.11 The MAIN Network;273
17.10;16.12 TPC;274
17.11;16.13 Internet URLs of Measurement Communities;274
17.12;16.14 Hints for the Practitioner and Summary;275
18;Glossary;276
19;Literature;285
20;Index;296




