E-Book, Deutsch, 303 Seiten, eBook
Ebeling Funktionentheorie, Differentialtopologie und Singularitäten
2001
ISBN: 978-3-322-80224-8
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark
Eine Einführung mit Ausblicken
E-Book, Deutsch, 303 Seiten, eBook
ISBN: 978-3-322-80224-8
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark
Eine Einführung in die Theorie der Riemannschen Flächen, die Funktionentheorie mehrerer Veränderlicher, die Differentialtopologie und die Singularitätentheorie. Es werden grundlegende Begriffe und Methoden der jeweiligen Gebiete dargestellt. Die Auswahl erfolgt im Hinblick auf Anwendungen auf die Untersuchung von isolierten Singularitäten analytischer Funktionen, die in vielfältigen Zusammenhängen von Bedeutung ist.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Weitere Infos & Material
1 Riemann’sche Flächen.- 1.1 Riemann’sche Flächen.- 1.2 Homotopie von Wegen, Fundamentalgruppe.- 1.3 Überlagerungen.- 1.4 Analytische Fortsetzung.- 1.5 Verzweigte meromorphe Fortsetzung.- 1.6 Die Riemann’sche Fläche einer algebraischen Funktion.- 1.7 Puiseuxentwicklung.- 1.8 Die Riemann’sche Zahlensphäre.- 2 Holomorphe Funktionen mehrerer Veränderlicher.- 2.1 Holomorphe Funktionen mehrerer Veränderlicher.- 2.2 Holomorphe Abbildungen und der Satz über implizite Funktionen.- 2.3 Lokale Ringe holomorpher Funktionen.- 2.4 Der Weierstraß’sche Vorbereitungssatz.- 2.5 Analytische Mengen.- 2.6 Analytische Mengenkeime.- 2.7 Reguläre und singuläre Punkte von analytischen Mengen.- 2.8 Abbildungskeime und Homomorphismen von analytischen Algebren.- 2.9 Der verallgemeinerte Weierstraß’sche Vorbereitungssatz.- 2.10 Die Dimension eines analytischen Mengenkeims.- 2.11 Eliminationstheorie für analytische Mengen.- 3 Isolierte Singularitäten holomorpher Funktionen.- 3.1 Differenzierbare Mannigfaltigkeiten.- 3.2 Tangentialbündel und Vektorfelder.- 3.3 Transversalität.- 3.4 Liegruppen.- 3.5 Komplexe Mannigfaltigkeiten.- 3.6 Isolierte kritische Punkte.- 3.7 Die universelle Entfaltung.- 3.8 Morsifikationen.- 3.9 Endlich bestimmte Funktionskeime.- 3.10 Klassifikation der einfachen Singularitäten.- 3.11 Reelle Morsifikationen der einfachen Kurvensingularitäten.- 4 Grundlagen aus der Differentialtopologie.- 4.1 Differenzierbare Mannigfaltigkeiten mit Rand.- 4.2 Riemann’sche Metrik und Orientierung.- 4.3 Der Ehresmann’sche Faserungssatz.- 4.4 Die Holonomiegruppe eines differenzierbaren Faserbündels.- 4.5 Singuläre Homologiegruppen.- 4.6 Schnittzahlen.- 4.7 Verschlingungszahlen.- 4.8 Die Zopfgruppe.- 4.9 Die Homotopiesequenz eines differenzierbaren Faserbündels.- 5 Topologie von Singularitäten.- 5.1 Monodromie und Variation.- 5.2 Monodromiegruppe und verschwindende Zyklen.- 5.3 Der Satz von Picard-Lefschetz.- 5.4 Die Milnorfaserung.- 5.5 Schnittmatrix und Coxeter-Dynkin-Diagramm.- 5.6 Klassische Monodromie, Variation und Seifertform.- 5.7 Die Operation der Zopfgruppe.- 5.8 Monodromiegruppe und verschwindendes Gitter.- 5.9 Deformation.- 5.10 Polarkurven und Coxeter-Dynkin-Diagramme.- 5.11 Unimodale Singularitäten.- 5.12 Die Monodromiegruppen der isolierten Hyperflächensingularitäten.




