Buch, Englisch, 304 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 482 g
Buch, Englisch, 304 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 482 g
Reihe: Graduate Texts in Mathematics
ISBN: 978-3-030-73841-9
Verlag: Springer
This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraïssé's characterization of elementary equivalence, Lindström's theorem on the maximality of first-order logic, and the fundamentals of logic programming.
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
A.- I Introduction.- II Syntax of First-Order Languages.- III Semantics of First-Order Languages.- IV A Sequent Calculus.- V The Completeness Theorem.- VI The Löwenheim–Skolem and the Compactness Theorem.- VII The Scope of First-Order Logic.- VIII Syntactic Interpretations and Normal Forms.- B.- IX Extensions of First-Order Logic.- X Computability and Its Limitations.- XI Free Models and Logic Programming.- XII An Algebraic Characterization of Elementary Equivalence.- XIII Lindström’s Theorems.- References.- List of Symbols.- Subject Index.




