E-Book, Englisch, Band 415, 945 Seiten, eBook
Theory and Application
E-Book, Englisch, Band 415, 945 Seiten, eBook
Reihe: Lecture Notes in Electrical Engineering
ISBN: 978-3-319-50904-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
The book is divided into 14 topical areas, including e.g. telecommunication, power systems, robotics, control systems, renewable energy, mechanical engineering, computer science and more. Readers will find revealing papers on the design and implementation of control algorithms for automobiles and electrohydraulic systems, efficient protocols forvehicular ad hoc networks and motor control, and energy-saving methods that can be applied in various fields of electrical engineering.
The book offers a valuable resource for all practitioners who want to apply the topics discussed to solve real-world problems in their challenging applications. Offering insights into common and related subjects in the research fields of modern electrical, electronic and related technologies, it will also benefit all scientists and engineers working in the above-mentioned fields.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Foreword;6
2;Contents;8
3;Keynote;18
4;Variable Structure System and Its Applications;19
4.1;1 Introduction;19
4.2;2 Sliding Mode Control for Linear System;20
4.2.1;2.1 Sliding Mode Design for a Linear System;20
4.2.2;2.2 Sliding Mode Control;21
4.2.3;2.3 Discrete-Time Sliding Mode Control;22
4.3;3 Direct Self-tuning Control for SISO System;26
4.4;4 Modeling and Swing-Up of Furuta Pendulum;29
4.4.1;4.1 Modeling of Furuta Pendulum by Projection;29
4.5;5 Swing up Control of Pendulum;32
4.5.1;5.1 Artificial Gravity Approach;32
4.5.2;5.2 Nonlinear Control;32
4.5.3;5.3 Nonlinear Sliding Mode Control;34
4.6;6 Conclusion;35
4.7;References;35
5;Controlling Complex Dynamical Networks;36
6;Computational Mechanics;37
7;Implement a Modified Viscoplasticity Based on Overstress Model into Numerical Simulation of the Incremental Sheet Forming Process;38
7.1;Abstract;38
7.2;1 Introduction;38
7.3;2 Modified Viscoplasticity Based on Overstress;39
7.4;3 Implementing into FEM Software;41
7.5;4 FEM Simulation and Practical Experiment;45
7.6;5 Results and Discussion;46
7.7;6 Conclusion;47
7.8;References;48
8;CFD Analysis of High Velocity P/V Valve Movement Depending on Pressure Change;49
8.1;Abstract;49
8.2;1 Introduction;49
8.3;2 High Velocity P/V Valve Movement;50
8.3.1;2.1 Governing Equation of Valve Movement;50
8.3.2;2.2 Mesh Deformation;51
8.4;3 CFD Analysis for High Velocity P/V Valve;52
8.4.1;3.1 High Velocity P/V Valve on Initial Opening (Case 1);52
8.4.2;3.2 High Velocity P/V Valve on Maximum Opening (Case 2);53
8.4.3;3.3 Valve Oscillation Depending on Pressure Change (Case 3);54
8.5;4 Conclusion;56
8.6;Acknowledgment;56
8.7;References;57
9;Finite Element Analysis on the Contact Stress of Class 600 Flange Joints;58
9.1;Abstract;58
9.2;1 Introduction;58
9.3;2 Finite Element Analysis;59
9.4;3 Results and Discussion;61
9.5;4 Conclusions;64
9.6;Acknowledgement;65
9.7;References;65
10;Computer Science;66
11;Accelerate SOMA Using Parallel Processing in GPGPU;67
11.1;Abstract;67
11.2;1 Introduction;67
11.3;2 Mathematical Problem;69
11.4;3 Optimization and Methods;70
11.4.1;3.1 Method 1: Each Individual Has One Thread;70
11.4.2;3.2 Method 2: Each Path Has One Thread with Shared Memory;71
11.5;4 Experimental Results;73
11.6;5 Conclusion;75
11.7;Acknowledgement;75
11.8;References;76
12;Comparison of Swarm and Evolutionary Based Algorithms for the Stabilization of Chaotic Oscillations;77
12.1;Abstract;77
12.2;1 Introduction;77
12.3;2 Problem Design;78
12.3.1;2.1 Chaotic System;78
12.3.2;2.2 Nonlinear Oscillations Control Method;78
12.3.3;2.3 Cost Function;80
12.4;3 Used Metaheuristic;80
12.4.1;3.1 Particle Swarm Optimizer – PSO;80
12.4.2;3.2 Differential Evolution;81
12.5;4 Simulation Results;82
12.5.1;4.1 Case Study 1;83
12.5.2;4.2 Case Study 2;84
12.6;5 Conclusion;86
12.7;Acknowledgements;86
12.8;References;86
13;Robust Optimization for Audio FingerPrint Hierarchy Searching on Massively Parallel with Multi-GPGPUs Using K-modes and LSH;88
13.1;1 Introduction;88
13.2;2 Basic Knowledge and Related Works;89
13.2.1;2.1 Localitive Sensitive Hashing;89
13.2.2;2.2 K-means and K-modes;90
13.2.3;2.3 Related Work: Fast k-Nearest Neighbor Search Using GPU;91
13.3;3 Previous Work: Hierarchy Massively Parallel Searching;91
13.3.1;3.1 Parallel Audio Fingerprint Searching using Single GPGPU;92
13.3.2;3.2 Parallel Audio Fingerprint Searching using Multiple GPGPUs;92
13.4;4 Proposed Methods: Robust Optimization for Audio FingerPrint Hierarchy Searching on Massively Parallel with Multi-GPGPUs Using K-modes and LSH;93
13.4.1;4.1 Miss Prediction Method;93
13.4.2;4.2 Miss Handling Method;94
13.5;5 Evaluation;94
13.5.1;5.1 Experiment Design;94
13.5.2;5.2 Result;95
13.5.3;5.3 Comparison Results;96
13.6;6 Conclusion and Future Work;97
13.7;References;97
14;Control System;99
15;?-Synthesis Robust Control on Tension Adjustment of Towing Rope System;100
15.1;Abstract;100
15.2;1 Introduction;100
15.3;2 Towing Rope System and Its Model;101
15.3.1;2.1 System Configuration;101
15.3.2;2.2 Data Acquiring;101
15.3.3;2.3 Developing Plant Model from Experiment Data;102
15.3.4;2.4 Uncertainty Analysis;102
15.4;3 Control Design and Experiment;104
15.4.1;3.1 Design Specification;104
15.4.2;3.2 ?-Synthesis;105
15.4.3;3.3 Order Reduction of ?-Controller;106
15.4.4;3.4 Analysis of Closed-Loop System;107
15.5;4 Experiment Results;107
15.6;5 Concluding Remarks;109
15.7;Acknowledgement;109
15.8;References;109
16;High-Bandwidth Tracking Control of Electric Hydrostatic Actuator (EHA) Using an Input Shaping Filter;110
16.1;Abstract;110
16.2;1 Introduction;110
16.3;2 Mathematical Modeling of the EHA System;111
16.3.1;2.1 Overview of the EHA;111
16.3.2;2.2 Modeling of the EHA System;113
16.4;3 Controller Design for the EHA-Driven System;114
16.4.1;3.1 Design of the PI?D Controller;115
16.4.2;3.2 Design of the Feed-Forward Controller;116
16.4.3;3.3 Design of the Input Shaping Filter;117
16.5;4 Control Performance of the EHA-Driven System;117
16.6;5 Conclusion;119
16.7;References;120
17;A Robust Simplified Backstepping Control Approach for Pump-Controlled Electro-Hydraulic Systems;121
17.1;Abstract;121
17.2;1 Introduction;121
17.3;2 System Modeling and Problem Statements;122
17.4;3 Robust Controller Design;123
17.4.1;3.1 Control Signal Selection;124
17.4.2;3.2 Stability Analysis;125
17.5;4 Experimental Validation;126
17.6;5 Conclusion;129
17.7;References;129
18;Modified Model Reference Adaptive Controller for a Nonlinear SISO System with External Disturbance and Input Constraint;131
18.1;1 Introduction;131
18.2;2 Problem Formulation;132
18.3;3 M-MRAC Controller Design;133
18.4;4 Experimental Setup and Results;136
18.5;5 Conclusion;140
18.6;References;140
19;A Model Reference Adaptive Controller for Belt Conveyors of Induction Conveyor Line in Cross-Belt Sorting System with Input Saturation;142
19.1;Abstract;142
19.2;1 Introduction;142
19.3;2 System Modelling;143
19.4;3 Model Reference Adaptive Controller Design;145
19.5;4 Experiment Results;148
19.6;5 Conclusion;151
19.7;Acknowledgments;151
19.8;References;152
20;A Combination of Direct and Indirect Types in Modified Model Reference Adaptive Controller for a SISO Uncertain System;153
20.1;1 Introduction;153
20.2;2 Combined Direct and Indirect M-MRAC Approach;154
20.2.1;2.1 Direct M-MRAC;155
20.2.2;2.2 Indirect M-MRAC;156
20.2.3;2.3 Combined Direct and Indirect M-MRAC;156
20.3;3 Experiment Setup and Results;157
20.4;4 Conclusions;160
20.5;References;161
21;Performance of a Modified-Model Reference Adaptive Controller for Belt Conveyors of Induction Conveyor Line in the Presence of Saturated Inputs and Bounded Disturbances;162
21.1;Abstract;162
21.2;1 Introduction;162
21.3;2 System Modelling;163
21.4;3 Modified-Model Reference Adaptive Controller Design;165
21.5;4 Simulation Results;168
21.6;5 Conclusion;173
21.7;Acknowledgments;173
21.8;References;173
22;Slide Mode Control Design for a Class of Uncertain Dynamic Systems;175
22.1;Abstract;175
22.2;1 Introduction;175
22.3;2 Statement of the Problem;176
22.4;3 Sliding Mode Stability Analysis;178
22.5;4 Reachability Analysis;179
22.6;5 Numerical Example;180
22.7;6 Conclusion;184
22.8;References;184
23;Energy;186
24;A Numerical Analysis on Heat Transfer Between the Air and the Liquid in a Hybrid Solar Collector;187
24.1;Abstract;187
24.2;1 Introduction;188
24.3;2 Numerical Model and Methods;189
24.3.1;2.1 Hybrid Solar Collector;189
24.3.2;2.2 Data Reduction;190
24.4;3 Results and Discussion;192
24.5;4 Conclusion;195
24.6;Acknowledgments;195
24.7;References;195
25;Performance Analysis of Brine Chiller Refrigeration Cycles;196
25.1;Abstract;196
25.2;1 Introduction;196
25.3;2 Cycle Descriptions and Analysis Conditions;198
25.3.1;2.1 Cycle Descriptions;198
25.3.2;2.2 Modeling;199
25.3.3;2.3 Analysis Conditions;199
25.4;3 Results and Discussion;200
25.4.1;3.1 Effect of Condensation and Evaporation Temperatures;200
25.4.2;3.2 Effect of Superheating and Subcooling Degrees;202
25.4.3;3.3 Effect of Intermediate Pressure;202
25.5;4 Conclusions;205
25.6;Acknowledgements;205
25.7;References;205
26;Experimental and Numerical Study on the Thermal Performances of Battery Cell and ECU for an E-Bike;207
26.1;Abstract;207
26.2;1 Introduction;207
26.3;2 Experimental Method and Numerical Analysis;209
26.3.1;2.1 Experimental Method and Apparatus;209
26.3.2;2.2 Numerical Analysis for Thermal Performance Estimation;210
26.4;3 Results and Discussion;211
26.4.1;3.1 Results and Discussion of Experiment Part;211
26.4.2;3.2 Result and Discussion of Numerical Part;212
26.5;4 Conclusion;215
26.6;Acknowledgement;216
26.7;References;216
27;Experimental Investigation of Heat Transfer Characteristics of Battery Management System and Electronic Control Unit of Neighborhood Electric Vehicle;217
27.1;Abstract;217
27.2;1 Introduction;217
27.3;2 Experimental Setup;218
27.4;3 Results and Discussion;219
27.5;4 Conclusion;222
27.6;Acknowledgement;223
27.7;References;223
28;Electric Energy Conversion of Repeated Mechanical Movement at Automatic Doors;224
28.1;Abstract;224
28.2;1 Introduction;224
28.3;2 Regenerative Energy Harvesting System;225
28.3.1;2.1 Automatic Door Operation;225
28.3.2;2.2 Motor Regenerative Harvesting System Design;227
28.3.3;2.3 Energy Harvesting Experiment of DC Motor;230
28.4;3 Conclusion;232
28.5;References;232
29;Dynamic Behavior Analysis of the Mechanical Parts for the Onshore-Type Wave Energy Converter;233
29.1;Abstract;233
29.2;1 Introduction;233
29.3;2 System Modeling;234
29.3.1;2.1 Mechanism of Wave Power Generation System;234
29.3.2;2.2 Kinematic Modeling;235
29.3.3;2.3 Wave Loads Modeling;236
29.4;3 Dynamic Simulation;238
29.4.1;3.1 Simulation Conditions;238
29.4.2;3.2 Simulation Results;239
29.5;4 Conclusion;240
29.6;Acknowledgement;240
29.7;References;241
30;An Effective Design of a Solar Thermal Collection and Storage System Using Molten Tin as Heat Transfer Fluid;242
30.1;Abstract;242
30.2;1 Introduction;242
30.3;2 Description and Computation of the Solar Thermal Collector;243
30.4;3 Describe the Process of Collection - Storage - Heating in the Solar Thermal System;243
30.4.1;3.1 The Collection Process of the Solar Thermal System;243
30.4.2;3.2 The Thermal Storage Process;243
30.4.3;3.3 The Heating Process;243
30.5;4 Calculating the Heating Process;244
30.6;5 Calculating the Melting Process of Fluid;246
30.7;6 Calculating the Heat Storage and Heat Insulation Process;247
30.8;7 Calculating the Heating Process;249
30.9;8 Calculating the Parameters of the Sample Solar Thermal System;249
30.10;9 Manufacturing Sample Thermal Collection and Storage System, Experimental Results;250
30.11;10 Conclusions;251
30.12;References;251
31;Image Processing;253
32;Detecting Pulse from Head Motions Using Smartphone Camera;254
32.1;1 Introduction;254
32.2;2 Detecting Pulse from Head Motions;255
32.2.1;2.1 Face Feature Points Detection and Tracking;256
32.2.2;2.2 Signal Refinement;256
32.2.3;2.3 Signal Selection and Heart Rate Estimation;257
32.3;3 Proposed System;257
32.4;4 Experimental Results and Discussion;257
32.5;5 Conclusion and Future Works;261
32.6;References;262
33;Preliminary Result on Underwater 3-Dimensional Reconstruction Using Imaging Sonar;263
33.1;1 Introduction;263
33.2;2 Reconstruction Using Sonar Image;264
33.2.1;2.1 3-Dimensional Transformation;264
33.2.2;2.2 Filtering the Sonar Image;264
33.2.3;2.3 Range Detection for Shape Extraction;265
33.2.4;2.4 Occupancy;266
33.3;3 Experiment;266
33.3.1;3.1 Environment;266
33.3.2;3.2 Experimental Result;267
33.4;4 Conclusion;269
33.5;References;269
34;Vision-Based Marker-Less Motion Measurement for Berthing;270
34.1;1 Introduction;270
34.2;2 Vision-Based Measurement System for Position and Heading;271
34.2.1;2.1 System Configuration;271
34.2.2;2.2 Tracking of the Designated Point;272
34.2.3;2.3 Distance and Bearing Measurement Using a Camera Unit;273
34.2.4;2.4 Motion Estimation Based on the Distances and Bearings;274
34.3;3 Performance Evaluation of the Proposed System;276
34.4;4 Conclusion;278
34.5;References;279
35;Independent Statistical Descriptor in Face Recognition;280
35.1;Abstract;280
35.2;1 Introduction;280
35.2.1;1.1 The Related Works;280
35.2.2;1.2 Motivation and Contribution;281
35.3;2 Independent Statistical Descriptor (ISD);282
35.3.1;2.1 Image-Filters Convolution;282
35.3.2;2.2 Response Binarization and Encoding;283
35.3.3;2.3 Local Histogramming and Pooling;283
35.4;3 Experimental Results and Discussions;284
35.4.1;3.1 Datasets: FERET and YMU;284
35.4.2;3.2 Implementation Summary;284
35.4.3;3.3 Independent Filter Settings;284
35.4.4;3.4 Performance Evaluation on FERET;284
35.4.5;3.5 Performance Evaluation on YMU;286
35.5;4 Concluding Remark;287
35.6;Acknowledgement;287
35.7;References;287
36;Implement a Computer Mouse Control for Quadriplegic Disability Using Camera;289
36.1;Abstract;289
36.2;1 Introduction;289
36.3;2 Methodology;290
36.3.1;2.1 System Overview;290
36.3.2;2.2 Initialization and Calibration;290
36.3.3;2.3 Facial Detection;291
36.3.4;2.4 Eye Detection;291
36.3.5;2.5 Eye Gaze Recognition;292
36.3.5.1;2.5.1 The Aperture of the Eye (Vertical Movement);292
36.3.5.2;2.5.2 The Glance Movement of the Eye (Horizontal Movement);296
36.3.6;2.6 Mouse Controller;296
36.4;3 Results;297
36.5;4 Conclusion;298
36.6;References;298
37;Measurement of the Fish Body Wound Depth Based on a Depth Map Inpainting Method;300
37.1;Abstract;300
37.2;1 Introduction;300
37.3;2 System Description and Aligning RGB Image with Depth Map;301
37.3.1;2.1 System Description;301
37.3.2;2.2 Aligning RGB Image with Depth Map;302
37.4;3 Proposed Depth Map Inpainting and Binarization;303
37.4.1;3.1 Proposed Depth Map Inpainting;303
37.4.2;3.2 Image Binarization;305
37.5;4 Calculation of the Depth Value;306
37.6;5 Experimental Results;307
37.6.1;5.1 Depth Map Inpainting;307
37.6.2;5.2 Wound Depth Test;308
37.7;6 Conclusion;310
37.8;Acknowledgments;310
37.9;References;310
38;Performance Evaluation of a Stereo-Camera-Based Markerless Distance Measurement System for Vessel Positioning;311
38.1;Abstract;311
38.2;1 Introduction;311
38.3;2 Vision-Based Marker-Less Distance Measurement System;312
38.3.1;2.1 System Configuration;312
38.3.2;2.2 Tracking of the Designated Point;312
38.3.3;2.3 Distance Measurement Using Natural Feature Points;314
38.4;3 Performance Evaluation of Our System;316
38.4.1;3.1 Accuracy Evaluation of the Proposed System;316
38.4.2;3.2 Robustness Evaluation for Illumination Change;317
38.5;4 Conclusion;319
38.6;Acknowledgment;319
38.7;References;319
39;Positional Displacement Measurement of Floating Units Based on Aerial Images for Pontoon Bridges;320
39.1;1 Introduction;320
39.2;2 Positional Displacement Measurement System;321
39.2.1;2.1 System Overview;321
39.2.2;2.2 Displacements Measurement of Floating Units;322
39.3;3 Feasibility Verification Using the Proposed System;324
39.4;4 Conclusion;325
39.5;References;326
40;Industrial Automation;327
41;Analysis of the Magnetic Characteristics in MFL Type NDT System for Inspecting Gas Pipelines;328
41.1;Abstract;328
41.2;1 Introduction;328
41.3;2 System Structure and Operating Principle;329
41.3.1;2.1 Magnetic Flux Leakage Method;329
41.3.2;2.2 System Structure for Pipeline Inspection;329
41.4;3 Magnetic Analysis Using Finite Element Method;330
41.4.1;3.1 Modeling and Numerical Analysis;330
41.4.2;3.2 Analysis of the Magnetic Force;331
41.5;4 Conclusion;333
41.6;References;333
42;A Research on Designing and Controlling of an Automatic Loading System Used Inside Containers;334
42.1;Abstract;334
42.2;1 Introduction;334
42.3;2 Mechanical Design;335
42.3.1;2.1 Design Parameters;335
42.3.2;2.2 Control Requirements;336
42.3.3;2.3 Design Model;337
42.3.4;2.4 Design Analysis;338
42.4;3 Stress Simulation;340
42.5;4 Design of the Control System;341
42.5.1;4.1 Control System;341
42.5.2;4.2 Control Algorithm;343
42.6;5 Conclusion;343
42.7;References;343
43;Introduction to K-water’s Research and Development Strategy for Advanced Water Pipe Network System Inspection, Monitoring, and Assessment Technology;344
43.1;Abstract;344
43.2;1 Introduction;344
43.3;2 Inspection and Assessment Technology Status Quo for Large Diameter Water Supply Pipelines;346
43.4;3 Strategy for Technology R&D;349
43.5;4 Anticipation of Benefits and Outcomes;351
43.6;References;352
44;Design of Hopper Position for Development of Automatic Mackerel Grader;353
44.1;Abstract;353
44.2;1 Introduction;353
44.3;2 System Modeling of Automatic Mackerel Grader;354
44.4;3 Sorting Simulation and Design the Hopper Position;356
44.5;4 Conclusion;358
44.6;Acknowledgement;358
44.7;References;359
45;Introduction of In-Line Inspection Technology in KOGAS;360
45.1;Abstract;360
45.2;1 Introduction;360
45.3;2 Development of Conventional In-Line Inspection Technology;361
45.4;3 Development of Advanced In-Line Inspection Technology;363
45.4.1;3.1 Development of CMFL Technology;363
45.4.2;3.2 Development of EMAT Technology;365
45.5;4 Development of Robotic In-Line Inspection Technology;368
45.6;5 Pipeline Simulation Facility for In-Line Inspection;370
45.6.1;5.1 Pipeline Simulation Facility for Conventional Intelligent PIG;370
45.6.2;5.2 UPSF (Un-Piggable Pipeline Simulation Facility);371
45.7;6 Conclusion;372
45.8;References;372
46;Inspection of Unpiggable Natural Gas Pipelines Using In-Pipe Robot;373
46.1;Abstract;373
46.2;1 Introduction;373
46.3;2 Overall Design of PIBOT;374
46.3.1;2.1 Design of Camera Module;374
46.3.2;2.2 Design of Drive Module;375
46.3.3;2.3 Design of Battery Module;376
46.3.4;2.4 Design of Pump Module;376
46.3.5;2.5 Design of MFL Module;377
46.3.5.1;2.5.1 Experiments in Pull-Rig Test Facility;377
46.3.5.2;2.5.2 Experiment Results;377
46.3.6;2.6 Design of RFECT Module;379
46.3.7;2.7 Integration of the PIBOT;379
46.4;3 Field Implementation;380
46.5;4 Conclusion;382
46.6;References;382
47;Materials;383
48;Improving the Angular Color Uniformity and the Lumen Output for White LED Lamps by Green Ce0.67 Tb0.33 MgAl11 O19:Ce,Tb Phosphor;384
48.1;Abstract;384
48.2;1 Introduction;384
48.3;2 Main Part;385
48.3.1;2.1 Enhancement of Emission Spectra;385
48.3.2;2.2 Scattering of Phosphor Particles;386
48.3.3;2.3 Simulation Results and Discussions;388
48.4;3 Conclusions;389
48.5;References;389
49;Optically-Regulated Current Switching Device Based on Vanadium Dioxide Thin Film Using Near-Infrared Laser Diode;391
49.1;Abstract;391
49.2;1 Introduction;391
49.3;2 Experimental Preparation;392
49.4;3 Results and Discussion;392
49.5;4 Conclusion;395
49.6;Acknowledgments;395
49.7;References;395
50;Multiple Resistance States in Vanadium-Dioxide-Based Memristive Device Using 966 nm Laser Diode;397
50.1;Abstract;397
50.2;1 Introduction;397
50.3;2 Experimental Setup;398
50.4;3 Results and Discussion;399
50.5;4 Conclusion;400
50.6;Acknowledgments;400
50.7;References;401
51;Wavelength-Switchable Erbium-Doped Fiber Ring Laser Based on Inline Switching Filter;402
51.1;Abstract;402
51.2;1 Introduction;402
51.3;2 Results and discussion;403
51.4;3 Conclusion;405
51.5;Acknowledgements;405
51.6;References;405
52;Simulation Study of Void Aggregations in Amorphous ZnO;407
52.1;Abstract;407
52.2;1 Introduction;407
52.3;2 Calculation Method;408
52.4;3 Results and Discussion;409
52.5;4 Conclusion;414
52.6;Acknowledgment;414
52.7;References;414
53;Influence of Green Phosphor Ce0.67 Tb0.33 MgAl11 O19:Ce,Tb on the Luminescent Properties and Correlated Color Temperature Deviation of Multi-chip White LEDs;416
53.1;Abstract;416
53.2;1 Introduction;416
53.3;2 Methods;417
53.4;3 Results and Discussion;417
53.5;4 Conclusions;420
53.6;References;420
54;Mechanical Engineering;421
55;Analysis of Intermediate Die Profile in Multistage Shape Drawing Process Based on Two-Dimensional Electric Field Analysis: Results for Trapezoidal-Shaped Wire;422
55.1;Abstract;422
55.2;1 Introduction;422
55.3;2 Intermediate Dies Design Method;424
55.3.1;2.1 Electric Field Analysis;424
55.3.2;2.2 Design of Intermediate Die Profiles Using EFA;424
55.4;3 Validation of the Advanced EFA Design Method;428
55.4.1;3.1 3D-FE Modeling for Shape Drawing Process;428
55.4.2;3.2 Results and Discussion of FE Analysis;428
55.5;4 Experiments with Multistage Shape Drawing;430
55.6;5 Conclusions;431
55.7;Acknowledgement;431
55.8;References;431
56;Similarity-Based Damage Detection Method: Numerical Study;433
56.1;Abstract;433
56.2;1 Introduction;433
56.3;2 Cosine Similarity Based Damage Detection Method;434
56.3.1;2.1 Change Ratios of Natural Frequencies;434
56.3.2;2.2 Warning Index;434
56.3.3;2.3 Cosine Similarity and Magnitude Index;435
56.4;3 Numerical Validation: 2-D Jacket Structure;436
56.5;4 Conclusions;439
56.6;Acknowledgments;439
56.7;References;439
57;Prediction of Strain Response in a Linear Beam System Using Frequency Response Function Between Strain and Acceleration;441
57.1;Abstract;441
57.2;1 Introduction;441
57.3;2 Theoretical Background;442
57.4;3 Excitation Test of Notched Simple Specimen;443
57.4.1;3.1 Preparation of Vibration Test;443
57.4.2;3.2 Response Data Acquisition;445
57.5;4 Prediction of Strain Response Using Acceleration;446
57.6;5 Conclusion;447
57.7;Acknowledgement;447
57.8;References;448
58;Review of ISO 1219 for Practical Use of Graphical Symbols and Circuit Diagrams;449
58.1;Abstract;449
58.2;1 Introduction;449
58.3;2 ISO 1219 Analysis and Discussion;450
58.3.1;2.1 Comparison of Old Version with New Version;450
58.3.2;2.2 Using Correct Symbols for Components;454
58.4;3 Conclusion;454
59;Analysis of Eddy Current Testing Method for Detection of Surface Hardening and Coating on Carbon Steel;456
59.1;Abstract;456
59.2;1 Introduction;456
59.3;2 Specimen;457
59.4;3 FEM Simulation;458
59.4.1;3.1 Simulation Setup;458
59.4.2;3.2 Simulation Results;459
59.5;4 Experimental Validation;460
59.5.1;4.1 Experiment Setup;460
59.5.2;4.2 Experiment Results;461
59.6;5 Conclusion;462
59.7;References;463
60;Effects of Major Design Parameters on Three-Stage Electro-Hydraulic Servovalve Performance;464
60.1;Abstract;464
60.2;1 Introduction;464
60.3;2 Basic Equations in the Main Valve;465
60.3.1;2.1 Continuity Equations in the Valve Chambers;466
60.3.2;2.2 Force Balance Equation in the Spool;466
60.4;3 Simulation Model of the Three-Stage Servovalve;467
60.5;4 Verification of the Simulation Model;469
60.5.1;4.1 The Pilot Valve;469
60.5.2;4.2 The Main Valve;470
60.6;5 Effects of Major Design Parameters on the Main Valve Performance;470
60.6.1;5.1 Damping Orifice Size A_{o};470
60.6.2;5.2 Flow Force in the Main Valve Spool;471
60.6.3;5.3 Supply Pressure to the Pilot Valve;472
60.6.4;5.4 Effect of Other Parameters;472
60.7;6 Conclusion;472
60.8;References;473
61;Effects of Piston Galleries on the Piston Temperatures of a Diesel Engine;474
61.1;Abstract;474
61.2;1 Introduction;474
61.3;2 Experiment;475
61.3.1;2.1 Piston with Cooling Gallery;475
61.3.2;2.2 Experimental Setup and Conditions;476
61.4;3 Result and Discussion;478
61.5;4 Conclusion;479
61.6;Acknowledgement;479
61.7;References;479
62;A Method for Measuring the Speed of Sound in a Rigid Pipe;480
62.1;Abstract;480
62.2;1 Introduction;480
62.3;2 Former Researches of Methods for Measuring the Speed of Sound in Rigid Pipes;481
62.3.1;2.1 Three Transducers Method [1];481
62.3.2;2.2 Anti-resonance Method [1];482
62.3.3;2.3 Transfer Matrix Method [2];483
62.4;3 A Novel Method for Measuring the Speed of Sound in Rigid Pipes with Frequency Series Form “Closed Conduit Method”;484
62.4.1;3.1 Configuration of the “Closed Conduit Method”;485
62.4.2;3.2 Measuring Principle in the “Closed Conduit Method”;485
62.5;4 Measurements in a Rigid Pipe;486
62.6;5 Conclusions;488
62.7;Acknowledgement;488
62.8;References;488
63;Study on Inherent Error of Pair Control Methods for Six Axis Manipulator with Hidden Actuators;489
63.1;Abstract;489
63.2;1 Introduction;489
63.3;2 Pair Control Methods for SDOF Motion;490
63.4;3 Inherent Error of Pair Control Methods;491
63.4.1;3.1 2D Rotations;491
63.4.2;3.2 3D Rotations;491
63.5;4 Summary;494
63.6;References;495
64;A Simulation of the Gerotor Motor with Cylinder Displacement Variation;496
64.1;Abstract;496
64.2;1 Introduction;496
64.3;2 Simulation Model;497
64.3.1;2.1 Basic Concept;497
64.3.2;2.2 Unit Component for Gerotor Motor;497
64.3.3;2.3 Motor Torque Calculation;501
64.3.4;2.4 Simulation Model Validation;502
64.4;3 Conclusion;503
64.5;References;504
65;The Effect of Preheating on Quality of Friction Stir Welding of Aluminum Alloy A5052;505
65.1;Abstract;505
65.2;1 Introduction;505
65.3;2 Methodology;506
65.3.1;2.1 Design Experiment;506
65.3.2;2.2 Mathematical Model;507
65.4;3 Experimental Details;509
65.4.1;3.1 Single-Factor Experiments;509
65.4.2;3.2 Multi-factor Experiments;509
65.5;4 Conclusion;513
65.6;References;513
66;Monitoring of Tooth Passing and Chatter Properties in End-Milling;514
66.1;Abstract;514
66.2;1 Introduction;514
66.3;2 Recursive Time Series Modeling;515
66.4;3 Practical Application;517
66.4.1;3.1 Measurement of End-Milling Force;517
66.4.2;3.2 Prediction and Mode Estimation of End-Milling Force;518
66.4.3;3.3 Power Spectrum and Frequency Response Function of End-Milling Force;520
66.5;4 Conclusions;523
66.6;Acknowledgement;523
66.7;References;523
67;A Study on Break-Away Bolt Design for a Marine Safety Break-Away Coupling Based on Elastic Stress Analysis;525
67.1;Abstract;525
67.2;1 Introduction;525
67.3;2 Conventional SBC Break-Away Bolts Analysis;527
67.4;3 Break-Away Bolt Design for 4” SBC;529
67.5;4 Conclusion;531
67.6;Acknowledgement;531
67.7;References;531
68;Motor Control;532
69;Controller Design for MIMO Servo System Using Polynomial Differential Operator – A Solution for Increasing Speed of an Induction Conveyor System;533
69.1;Abstract;533
69.2;1 Introduction;533
69.3;2 System Design;534
69.4;3 Modeling of a BDTS;535
69.5;4 Controller Design;536
69.6;5 Simulation and Experimental Results;540
69.6.1;5.1 Trapezoidal Velocity yr1;541
69.6.2;5.2 Trapezoidal Velocity yr2;543
69.6.3;5.3 Step Reference Input yr3;543
69.7;6 Conclusion;545
69.8;Acknowledgments;545
69.9;References;545
70;Adaptive Sliding Mode Controller for Induction Motor;547
70.1;Abstract;547
70.2;1 Introduction;547
70.3;2 Mathematical Model of Induction Machines;548
70.4;3 Sliding Mode Observer;549
70.4.1;3.1 Sliding Mode Observer for Speed Estimation;549
70.4.2;3.2 Flux Estimator;550
70.4.3;3.3 Stator Resistance Estimator;550
70.5;4 Sliding Mode Control;551
70.5.1;4.1 Sliding Mode Control;551
70.5.2;4.2 Gain Adaption Method;553
70.6;5 Simulations;553
70.7;6 Conclusions;556
70.8;Acknowledgement;556
70.9;References;556
71;Parameter Adaptation in Machine Model-Based Speed Observers for Sensorless Induction Motor Drive;558
71.1;Abstract;558
71.2;1 Introduction;558
71.3;2 Observers with SRAM;560
71.3.1;2.1 RF-MRAS Observer;560
71.3.2;2.2 Luenberger Observer;561
71.3.3;2.3 CB-MRAS Observer;562
71.4;3 Simulation Results;563
71.5;4 Conclusions;566
71.6;Acknowledgement;566
71.7;References;566
72;PID Speed Controller Optimization Using Online Genetic Algorithm for Induction Motor Drive;568
72.1;Abstract;568
72.2;1 Introduction;568
72.3;2 Mathematical Model of the Vector Controlled Induction Motor;569
72.4;3 Classical Speed Controller;571
72.5;4 Speed Controller Using Genetic Algorithm;572
72.6;5 Simulation Results;575
72.6.1;5.1 Classical PID Speed Controller;575
72.6.2;5.2 Online Tuned PID Speed Controller Using Genetic Algorithm;575
72.6.3;5.3 Notes;575
72.7;6 Conclusion;579
72.8;Acknowledgement;579
72.9;References;580
73;Closed Loop Motion Synchronous Velocity Control for AC Motor Drives – A Solution for Increasing Speed of a Cross-Belt Sorting Conveyor System;581
73.1;Abstract;581
73.2;1 Introduction;581
73.3;2 Cross Belt Sorting Conveyor System;582
73.3.1;2.1 Overall Cross-Belt Conveyor System;582
73.3.2;2.2 Synchronization of Multi-motor Drives in the CSCS;583
73.4;3 Closed-Loop Motion Control for AC Motor Drives Based on Vector Control Method;583
73.5;4 Experimental Results;586
73.6;5 Conclusion;589
73.7;Acknowledgments;589
73.8;References;589
74;Power System;591
75;Modified Bat Algorithm for Combined Economic and Emission Dispatch Problem;592
75.1;Abstract;592
75.2;1 Introduction;592
75.3;2 Problem Formulation;594
75.3.1;2.1 Objective Function;594
75.3.2;2.2 Constraints;594
75.4;3 Modified Bat Algorithm for CEED Problem;594
75.4.1;3.1 Conventional Bat Algorithm;594
75.4.2;3.2 Modified Bat Algorithm;595
75.5;4 Implementation of the MBA for the Considered Problem;596
75.5.1;4.1 Initialization;596
75.5.2;4.2 Updating New Velocity and New Position for Each Bat;596
75.5.3;4.3 Searching a New Solution Around the Global Best Solution;597
75.5.4;4.4 Selection of New Solution Using Loudness and Fitness Comparison;597
75.5.5;4.5 The Termination Criterion of the Search Process;597
75.6;5 Numerical Results;597
75.7;6 Conclusion;599
75.8;References;599
76;New Solutions to Modify the Differential Evolution Method for Multi-objective Load Dispatch Problem Considering Quadratic Fuel Cost Function;601
76.1;Abstract;601
76.2;1 Introduction;601
76.3;2 Formulation of Multi-objective Load Dispatch;602
76.4;3 Modified Differential Evolution for Mold Problem;604
76.5;4 Results and Discussions;605
76.5.1;4.1 System I with Three Thermal Units;606
76.5.2;4.2 System II with Six Thermal Units;608
76.6;5 Conclusion;609
76.7;References;609
77;Robotics;611
78;Locomotion Control of a Hexapod Robot Based on Central Pattern Generator Network;612
78.1;Abstract;612
78.2;1 Introduction;612
78.3;2 System Description and Kinematics Modeling;613
78.3.1;2.1 System Description;613
78.3.2;2.2 Kinematics Modeling of One Leg of the Hexapod Robot;614
78.4;3 Walking Gait Generated by CPG Network;615
78.4.1;3.1 Neuron Oscillator in CPG Model;616
78.4.2;3.2 Gait Planning Based on CPG Network;616
78.4.3;3.3 Mapping Function;618
78.4.4;3.4 End Effector Trajectory Tracking Controller Design;619
78.5;4 Simulation and Experimental Results;621
78.5.1;4.1 Gait Planning Simulation Results;621
78.5.2;4.2 Simulation and Experimental Results;621
78.6;5 Conclusion;624
78.7;Acknowledgment;625
78.8;References;625
79;Locomotion Control of a Hexapod Robot with Tripod Gait Using Central Pattern Generator Network;626
79.1;Abstract;626
79.2;1 Introduction;626
79.3;2 System Description and Kinematics Modeling;627
79.3.1;2.1 System Description;627
79.3.2;2.2 Kinematics Modeling of One Leg of the Hexapod Robot;627
79.4;3 Walking Gait Generated by CPG Network;630
79.4.1;3.1 Neuron Oscillator in CPG Model;630
79.4.2;3.2 Gait Planning Based on CPG Network;631
79.4.3;3.3 Mapping Function;632
79.4.4;3.4 End Effector Trajectory Tracking Controller Design;633
79.5;4 Simulation and Experimental Results;635
79.5.1;4.1 Gait Planning Simulation Results;635
79.5.2;4.2 Simulation and Experimental Results;637
79.6;5 Conclusion;639
79.7;Acknowledgment;640
79.8;References;640
80;Laboratory Test of Lifting Pump for Deep Seabed Manganese Nodule;642
80.1;Abstract;642
80.2;1 Introduction;642
80.3;2 Lifting Pump Design;644
80.3.1;2.1 Design Requirements;644
80.3.2;2.2 Electric Motor and Pump Design;644
80.3.3;2.3 Shroud Design;646
80.4;3 Driving System;646
80.4.1;3.1 Inverter;647
80.4.2;3.2 Generator and Step-up Transformer;647
80.5;4 Performance Test;648
80.5.1;4.1 Test Facility;648
80.5.2;4.2 Test Results;649
80.6;5 Conclusion;651
80.7;Acknowledgement;651
80.8;References;652
81;Distance Control for Pick-up Device System of Pilot Mining Robot;653
81.1;Abstract;653
81.2;1 Introduction;653
81.3;2 Experiment Target and Environment;654
81.3.1;2.1 Pilot Mining Robot;654
81.3.2;2.2 Pick-up Device System;656
81.3.3;2.3 Experiment Environment;656
81.4;3 Distance Control of Pick-up Device;657
81.4.1;3.1 Analysis the Nature of Pick-up Device;657
81.4.2;3.2 Parameter Identification of Pick-up Device;659
81.4.3;3.3 PI Gain Tuning for Distance Control;663
81.5;4 Conclusion;663
81.6;Acknowledgement;664
81.7;References;664
82;Optimal Control Method for Stable Walking Gait of a UXA-90 Light Robot;665
82.1;Abstract;665
82.2;1 Introduction;665
82.3;2 Mathematical Model of the Biped Robot;666
82.3.1;2.1 Kinematics Model of Biped Robot;666
82.3.2;2.2 Inverse Kinematics of the Biped Robot;667
82.3.3;2.3 Dynamic Model of the Biped Robot;667
82.4;3 Control for Biped Robot;668
82.4.1;3.1 ZMP Reference Generation for Walking Robots;669
82.4.2;3.2 Walking Pattern Generation by Optimal Tracking Control;669
82.4.3;3.3 Optimal Tracking Control for Motion of the Biped Robot;670
82.4.4;3.4 Calculation of ZMP from Robot’s Motion;671
82.5;4 Simulation Result;672
82.6;5 Conclusion;674
82.7;References;674
83;Stable Walking Gait Planning for 3D Biped Robot with Feet Applied for UXA90-Light;676
83.1;Abstract;676
83.2;1 Introduction;676
83.2.1;1.1 Research Overview;676
83.2.2;1.2 Robot UXA90-Light;678
83.3;2 Robot Model;678
83.3.1;2.1 Point Feet Robot Model Projected in Sagittal Plane;678
83.3.2;2.2 Robot with Feet Model Projected in Sagittal Plane;680
83.3.3;2.3 Robot with Feet Model Projected in Frontal Plane;681
83.4;3 Walking Gait Planning;682
83.5;4 Simulation Results;683
83.6;5 Conclusion;685
83.7;References;686
84;Mobile Robot Localization and Path Planning in a Picking Robot System Using Kinect Camera in Partially Known Environment;687
84.1;Abstract;687
84.2;1 Introduction;687
84.3;2 System Description;688
84.4;3 Kinematics Modeling;689
84.5;4 Theoretical Backgrounds for Image Processing;690
84.6;5 Localization Algorithm;692
84.6.1;5.1 Landmark Detection;692
84.6.2;5.2 Prediction and Update;693
84.7;6 Path Planning Using D* Lite Algorithm;695
84.8;7 Tracking Controller;697
84.9;8 Experimental Results;699
84.10;9 Conclusion;701
84.11;Acknowledgments;702
84.12;References;702
85;Development of Series Elastics Actuators for Physical Rehabilitation Devices;703
85.1;Abstract;703
85.2;1 Introduction;703
85.3;2 Series Elastic Actuator Principle;704
85.4;3 Apply SEA to Rehabilitation Devices;708
85.4.1;3.1 Real Problem of the Patient;708
85.4.2;3.2 Mechanical Design of Ankle and Wrist Rehabilitation Device;709
85.4.3;3.3 Control Strategy for Assistance;709
85.4.4;3.4 Performance;712
85.4.5;3.5 Assessment of the Training Result;712
85.5;4 Conclusion;713
85.6;References;713
86;Active Control for Rock Grinding Works of an Underwater Construction Robot Consisting of Hydraulic Rotary and Linear Actuators;714
86.1;Abstract;714
86.2;1 Introduction;714
86.3;2 Active Control of Rock Grinding;716
86.4;3 Experimental Results;720
86.5;4 Conclusion;722
86.6;5 Acknowledgment;722
86.7;References;722
87;Measuring Work Efficiency of the Rock-Crushing Operation of the Hydraulic System;724
87.1;Abstract;724
87.2;1 Introduction;724
87.3;2 System Description;725
87.4;3 Work Efficiency Measures of the Rock-Crashing Operation;726
87.5;4 Conclusion;728
87.6;Acknowledgment;728
87.7;References;728
88;Sensors;730
89;Development of Hetero-Core Fiber Optic Tip Tactile Sensors for an Artificial Fingertip;731
89.1;Abstract;731
89.2;1 Introduction;731
89.3;2 Proposed Sensor;732
89.3.1;2.1 Structure of a Hetero-Core Fiber Optic Tip Tactile Sensor;732
89.3.2;2.2 Contact Sensitivity;732
89.4;3 Artificial Fingertip Embedded with Proposed Sensors;734
89.5;4 Conclusion;736
89.6;References;736
90;Femtosecond Laser Internal Processing for an Optical Fiber Sensor Inducing Interference of Optical Waveguide;737
90.1;Abstract;737
90.2;1 Introduction;737
90.2.1;1.1 Femtosecond Laser;737
90.2.2;1.2 Optical Fiber Sensor;738
90.3;2 Principle of Proposed Sensor;738
90.4;3 Experiments and Results;740
90.4.1;3.1 Fabrication of Sensing Structure;740
90.4.2;3.2 Measurements;741
90.5;4 Conclusion;742
90.6;Acknowledgement;743
90.7;References;743
91;Determining Acceleration Factors for a MEMS Type Accelerometer;745
91.1;Abstract;745
91.2;1 Introduction;745
91.3;2 Failure Mode and Mechanism Analysis;747
91.4;3 The Accelerated Life Test;748
91.4.1;3.1 Vibration Test Equipment;748
91.4.2;3.2 Calculation of the no Failure Life Test Time;750
91.4.3;3.3 Determining the Acceleration Factors;751
91.4.3.1;3.3.1 The Acceleration Factor;751
91.4.3.2;3.3.2 Temperature;751
91.4.3.2.1;High and Low Temperature Tests;751
91.4.3.2.2;Thermal Deformation Analysis;752
91.4.4;3.4 An Equation for the Accelerated Life Test;753
91.5;4 Conclusion;754
91.6;References;754
92;Telecommunication;756
93;A Performance Analysis of an AF Two Hops Model in the Energy Harvesting Relay Network;757
93.1;1 Introduction;757
93.2;2 Network Model;759
93.3;3 Outage Probability and Throughput Analysis;760
93.3.1;3.1 The Outage Probability Analysis;760
93.3.2;3.2 The Throughput Analysis;762
93.4;4 Numerical Results;762
93.5;5 Conclusion;765
93.6;References;765
94;Secrecy Performance of Joint Relay and Jammer Selection Methods in Cluster Networks: With and Without Hardware Noises;767
94.1;Abstract;767
94.2;1 Introduction;767
94.3;2 System Model;768
94.4;3 Secrecy Outage Probability (SOP);771
94.4.1;3.1 The RAND Protocol;771
94.4.2;3.2 The BEST Protocol;772
94.5;4 Simulation Results;773
94.6;5 Conclusion;776
94.7;Acknowledgments;776
94.8;References;776
95;A Dynamic Cooperative MAC Protocol for Vehicular Ad-hoc Networks;778
95.1;1 Introduction;778
95.2;2 Protocol Description;779
95.2.1;2.1 Multi-hop Forwarder and Emergency Slot Reservation;780
95.2.2;2.2 Emergency Message Broadcast and Multi-hop Transmission;782
95.2.3;2.3 Service Message Transmission;782
95.3;3 Analytical Model;782
95.4;4 Performance Evaluation;786
95.5;5 Conclusion;787
95.6;References;787
96;A DF Performance Analysis in Half-Duplex and Full-Duplex Relaying Network;789
96.1;1 Introduction;789
96.2;2 Network Model;790
96.2.1;2.1 The Full Duplex Relaying Model;791
96.2.2;2.2 The Half-Duplex Relaying;793
96.3;3 The Outage Probability and Throughput Analysis;793
96.3.1;3.1 The Outage Probability Analysis;793
96.3.2;3.2 The Throughput Analysis;794
96.4;4 Numerical Results;795
96.5;5 Conclusion;799
96.6;References;799
97;Directional Multi-channel MAC for VANETs;801
97.1;1 Introduction;801
97.2;2 Antenna Model;803
97.3;3 The Proposed DMV Protocol;803
97.3.1;3.1 Main Idea;804
97.3.2;3.2 Multi-hop Forwarder Nomination;804
97.3.3;3.3 Safety Message Broadcast;805
97.3.4;3.4 Non-safety Message Transmission;807
97.3.5;3.5 The Operation of the DMV Protocol;807
97.3.6;3.6 Synchronization Collision Reduction;808
97.4;4 Performance Evaluation;808
97.5;5 Conclusion;809
97.6;References;810
98;Optimal Design of Cyclic Prefix in MIMO-OFDM System Over Nakagami-m Fading Channel;811
98.1;Abstract;811
98.2;1 Introduction;811
98.3;2 Nakagami-m Fading Channel;812
98.4;3 MIMO-OFDM System Model;813
98.5;4 Numerical Simulation;815
98.6;5 Conclusions;818
98.7;Acknowledgement;818
98.8;References;818
99;An Efficient Multi-channel MAC Protocol for Vehicular Ad Hoc Networks;820
99.1;1 Introduction and Related Works;820
99.2;2 System Model;822
99.3;3 EMMAC Protocol;823
99.3.1;3.1 Accessing Time Slots on the TP;825
99.3.2;3.2 Dynamic TDMA-Based Period Length;825
99.4;4 Performance Evaluation;826
99.5;5 Conclusion;828
99.6;References;828
100;Design of Low-Power 24 GHz Voltage-Controlled Oscillator;829
100.1;Abstract;829
100.2;1 Introduction;829
100.3;2 Circuit Modeling and Design;830
100.3.1;2.1 Overview of Automotive Collision Avoidance Radar;830
100.3.2;2.2 VCO Design and Analysis;831
100.4;3 Results and Discussion;833
100.5;4 Conclusions;834
100.6;Acknowledgements;834
100.7;References;834
101;On the Performance of Energy Harvesting for Decode-and-Forward Full-Duplex Relay Networks in Imperfect CSI Condition;836
101.1;1 Introduction;836
101.2;2 System Model;838
101.2.1;2.1 Energy Harvesting Phase;839
101.2.2;2.2 Information Transmission Phase;840
101.3;3 Performance Analysis;840
101.3.1;3.1 Outage Probability and System Throughput;841
101.3.2;3.2 Optimal Time Switching Factor;842
101.4;4 Numerical Results;842
101.4.1;4.1 Simulation Setup;843
101.5;5 Conclusion;846
101.6;References;846
102;Vehicle Technology;848
103;Vehicle Dynamic Analysis for the Ball-Screw Type Energy Harvesting Damper System;849
103.1;Abstract;849
103.2;1 Introduction;849
103.3;2 Modeling of the Ball-Screw Damper System;851
103.4;3 Comparing Experiment with Simulation Result;854
103.5;4 Conclusion;856
103.6;Acknowledgment;856
103.7;Appendix;856
103.8;References;857
104;Virtual Prototyping and Performance Analysis of an IVT Equipped Electric Vehicle;859
104.1;Abstract;859
104.2;1 Introduction;859
104.3;2 Power Efficiency of an Electric Motor;860
104.4;3 Infinitely Variable Transmission;862
104.5;4 Virtual Prototyping of an IVT into an Electric Vehicle;864
104.6;5 Performance Analysis and Discussion;867
104.7;6 Conclusions;868
104.8;Acknowledgement;868
104.9;References;869
105;System Design of an Unmanned Surface Vehicle for Autonomous Navigation;870
105.1;1 Introduction;870
105.2;2 Development of USV;871
105.2.1;2.1 Hardware System;871
105.2.2;2.2 Software System;872
105.3;3 Experimental Results;873
105.3.1;3.1 Remote Control;873
105.3.2;3.2 Autonomous Navigation;873
105.4;4 Conclusion;874
105.5;References;875
106;Vehicle Stability Controller Based on Adaptive Sliding Mode Algorithm with Estimated Vehicle Side-Slip Angle;876
106.1;Abstract;876
106.2;1 Introduction;876
106.3;2 Vehicle and Tire Mathematical Models;877
106.3.1;2.1 Vehicle Model;877
106.3.2;2.2 Tire Model;878
106.4;3 Controller Design;879
106.4.1;3.1 Control System;879
106.4.2;3.2 Vehicle Side-Slip Angle Estimation;879
106.4.3;3.3 Reference Yaw-Rate and Side-Slip Angle Generators;880
106.4.4;3.4 Adaptive Sliding Mode Controller;880
106.4.5;3.5 Pressure Generator;883
106.5;4 Simulation Results;883
106.6;5 Conclusions;885
106.7;References;885
107;A Model-Based Controller Development for a Series Hydraulic Hybrid Vehicle;887
107.1;Abstract;887
107.2;1 Introduction;887
107.3;2 System Configuration and Control-Oriented Model;888
107.4;3 Model-Based Controller;890
107.5;4 Simulation and Results;892
107.6;5 Conclusion;896
107.7;References;896
108;An Improvement of Rule-Based Control Strategy for a Series Hydraulic Hybrid Vehicle;898
108.1;Abstract;898
108.2;1 Introduction;898
108.3;2 System Description and Modeling;899
108.3.1;2.1 System Description;899
108.3.2;2.2 Mathematical Model;899
108.4;3 Control System Development;901
108.5;4 Simulation Results and Discussion;903
108.6;5 Conclusion;907
108.7;References;907
109;Position Recognition for an Autonomous Vehicle Based on Vehicle-to-Led Infrastructure;909
109.1;Abstract;909
109.2;1 Introduction;909
109.3;2 System Design;910
109.3.1;2.1 Color Specification;911
109.3.2;2.2 Color Measurement;913
109.3.3;2.3 LED Tunnel Lighting Design;914
109.4;3 Experiment and Result Consideration;914
109.4.1;3.1 Chromaticity Coordinates Measurement to Every Lanes in LED Tunnels;914
109.4.2;3.2 Chromaticity Coordinates and Functional Relation of Road Lane Position;914
109.5;4 Conclusion;916
109.6;Acknowledgements;917
109.7;References;917
110;Nonlinear Vehicle Stability Analysis;918
110.1;Abstract;918
110.2;1 Introduction;918
110.3;2 Vehicle Modeling;919
110.3.1;2.1 Coordinate Systems;919
110.3.2;2.2 Two-Track Vehicle Model;920
110.4;3 Vehicle Stability Analysis;922
110.5;4 Simulations and Results;923
110.6;5 Conclusion;926
110.7;Acknowledgement;927
110.8;References;927
111;Rapid Shortest Path Decision of Unmanned Aerial Vehicles with Kinematic Constraints;928
111.1;Abstract;928
111.2;1 Introduction;928
111.3;2 Background;929
111.4;3 Problem Statement;930
111.4.1;3.1 Smooth Curve;930
111.4.2;3.2 Kinematic Constraints;931
111.4.3;3.3 Associated Circles;932
111.4.4;3.4 Directions of Tangential Lines and Circles;933
111.4.5;3.5 Number of Cases and Determination of the Optimal Path;934
111.4.6;3.6 Types of Paths and Belt/Pulley Theory;935
111.4.7;3.7 Arc Lengths and Paths;936
111.5;4 Optimal Path Decision;937
111.6;5 Conclusion;939
111.7;References;940
112;Author Index;942