Dutta / Kar / Kumar | Advances in VLSI, Communication, and Signal Processing | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 587, 1004 Seiten

Reihe: Lecture Notes in Electrical Engineering

Dutta / Kar / Kumar Advances in VLSI, Communication, and Signal Processing

Select Proceedings of VCAS 2018
1. Auflage 2019
ISBN: 978-981-329-775-3
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

Select Proceedings of VCAS 2018

E-Book, Englisch, Band 587, 1004 Seiten

Reihe: Lecture Notes in Electrical Engineering

ISBN: 978-981-329-775-3
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book comprises select proceedings of the International Conference on VLSI, Communication and Signal processing (VCAS 2018). It looks at latest research findings in VLSI design and applications. The book covers a wide range of topics in electronics and communication engineering, especially in the area of microelectronics and VLSI design, communication systems and networks, and image and signal processing. The contents of this book will be useful to researchers and professionals alike.

Dr. Debashis Dutta obtained his Masters from the Electrical Engineering department of Indian Institute of Technology, Delhi and his PhD in Electronics and Electrical Communication Engineering from Indian Institute of Technology, Kharagpur. He worked as Scientist G and Group Coordinator (R&D in Electronics Group) in the Ministry of Electronics and Information Technology (MeitY), Government of India. Dr. Dutta has also worked as Programme Director for Special Manpower Development Program (SMDP) in VLSI Design. He was the Director in the board of NICSI, a society under National Informatics Centre and Governing Council member in several R&D institutions. Currently, he works as a consultant for various academic institutions and electronics manufacturing industries. His research interests include low-power analog circuit design, biomedical electronics and neural networks. Dr. Haranath Kar received his Bachelors from Bengal Engineering College, Shibpur (now IIEST) in 1989, his Masters from Banaras Hindu University, Varanasi in 1992 and his PhD from the University of Allahabad in 2000. After spending a brief period at the Defence Research and Development Organization as Scientist B, he joined Motilal Nehru National Institute of Technology (MNNIT), Allahabad, India, as a Lecturer in 1991, where he became an Assistant Professor in 2001, Associate Professor in2006 and Professor in 2007. He spent two years at the Atilim University, Turkey (2002-2004) as an Assistant Professor. He was Head of Electronics and Communication Engineering Department at MNNIT during 2013-2015. His current research interests include digital signal processing, nonlinear dynamical systems, delayed systems, robust stability, guaranteed cost control, and multidimensional systems. He is a recipient of the 2002-2003 IEE Heaviside Premium Award. He was conferred with the D.N. Agrawal Award of excellence and the Bharat Vikas Award in 2005 and 2017, respectively. He is also a member of editorial board of the Mathematical Problems in Engineering. Dr. Chiranjeev Kumar received his Bachelors in Telecommunication Engineering from Banglore University, his Masters in Computer Science, and his PhD from MNNIT Allahabad. Currently, he is a professor in the Department of Computer Science & Engineering, Indian Institute of Technology (IIT-ISM), Dhanbad, India. His research interests include wireless networks, software engineering, mobility management, and cognitive radio networks. He has published more than 100 articles in international journals and conferences proceedings. Dr. Kumar has also contributed several books and book chapters on wireless communication and networking, and he has worked as an ad hoc reviewer of many international journals. Dr. Vijaya Bhadauria received her Bachelors (Electronics) and Masters (Control & Instrumentation), and her PhD in Electronics Engineering from MNNIT Allahabad. At present, she is Professor and Head in the Department of Electronics & Communication Engineering, MNNIT Allahabad. Her major research interests include VLSI circuits and system, digital integrated circuit design, advanced analog integrated circuit design, VLSI technology and Semiconductor Device and Modeling. She has published many papers in international journals and proceedings, and has also acted as an ad hoc reviewer of many international journals.

Dutta / Kar / Kumar Advances in VLSI, Communication, and Signal Processing jetzt bestellen!

Weitere Infos & Material


1;VCAS 2018 Committees;6
1.1;Chief Patron;6
1.2;Patron;6
1.3;General Chair;6
1.4;Program Chair;6
1.5;Organizing Chair;6
1.6;Keynote Chair;7
1.7;Tutorial Chair;7
1.8;Workshop Chair;7
1.9;Public Relation Chair;7
1.10;Publication Chair;7
1.11;Finance Chair;7
1.12;Program Co-Chair;7
1.13;Event Management Chair;8
1.14;Publicity Chair;8
1.15;Industrial Chair;8
1.16;Hospitality Chair;8
1.17;Registration Chair;8
1.18;Resource Generation Chair;8
1.19;Website Chair;8
1.20;Workshop Co-Chair;9
1.21;Hospitality Co-Chair;9
1.22;Tutorial Co-Chair;9
1.23;Registration Co-Chair;9
1.24;Organizing Secretary;9
1.25;Advisory Committee;9
1.26;Technical Program Committee;10
1.27;Organizer;12
2;Preface;13
3;Contents;14
4;Editors and Contributors;22
5;Communication Engineering;35
6;BER Performance Evaluation of Different Modulation Techniques for Underwater FSO Communication System;36
6.1;1 Introduction;37
6.2;2 Motivation and Contribution;37
6.3;3 Proposed Work;38
6.4;4 Signal-to-Noise Ratio (SNR) Equation;40
6.5;5 Results and Discussion;41
6.6;6 Conclusion;43
6.7;References;44
7;Reliable Location-Aware Routing Protocol for Urban Vehicular Scenario;45
7.1;1 Introduction;45
7.2;2 Related Work;47
7.3;3 Protocol Overview;47
7.3.1;3.1 Forwarder Selection Process: A Two-Level Process;48
7.3.2;3.2 Road Selection Process;49
7.4;4 Simulation Results;51
7.4.1;4.1 Packet Delivery Ratio (PDR);51
7.4.2;4.2 Throughput;52
7.4.3;4.3 End to End Delay;53
7.5;5 Conclusion;54
7.6;References;54
8;DFT Precoder Technique Combined with µ-Law Companding for PAPR Reduction in OFDM System;55
8.1;1 Introduction;55
8.2;2 Problem Formulation;56
8.3;3 Proposed PAPR Reduction and System Model;58
8.3.1;3.1 Discrete Fourier Transform (DFT) and DFT Matrix;58
8.3.2;3.2 DFT Precoder Matrix Based OFDM System;59
8.3.3;3.3 Companded OFDM Signals;60
8.3.4;3.4 Receiver Section;60
8.4;4 Simulation Results and Discussion;61
8.5;5 Conclusion;65
8.6;References;67
9;Power Sector Reforms, Strategies, and Contribution of Private Sector;68
9.1;1 Key Issues Facing the Indian Power Sector;69
9.1.1;1.1 Financial Viability of the SEBs;69
9.1.2;1.2 Inadequate Investment in the Sector;69
9.1.3;1.3 T&D Losses;69
9.1.4;1.4 Inefficient Tariff Structure;69
9.2;2 Key Lessons from Latin America and East Asian Experience;70
9.3;3 Power Sector Reforms;70
9.3.1;3.1 Steps to Be Taken for Power Sector Reform in a Developing Country like India;71
9.4;4 Policies of Power Sector;72
9.4.1;4.1 Generation;72
9.4.2;4.2 Thermal Generation;73
9.4.3;4.3 Power;73
9.4.4;4.4 Nonconventional Energy Sources;73
9.4.5;4.5 Renovation & Modernization (R&M);74
9.4.6;4.6 Transmission;74
9.4.7;4.7 Distribution;74
9.4.8;4.8 Technology Development and R&D;75
9.4.9;4.9 Transmission & Distribution Losses;75
9.4.10;4.10 Energy Conservation;75
9.4.11;4.11 Environmental Issues;75
9.4.12;4.12 Protection of Consumer Interests and Quality Standards;75
9.4.13;4.13 Fuel Usage;76
9.5;5 Private Sector Participation;76
9.5.1;5.1 Introduction;76
9.5.2;5.2 Need for Privatization;76
9.5.3;5.3 Financial Viability of the SEBs;77
9.6;6 Ensuring Long-Term Commitment of the Private Operators;78
9.6.1;6.1 Enron-Led Dabhol Power Project;79
9.6.2;6.2 Losses;79
9.7;7 Conclusion;80
9.8;References;80
10;Performance Evaluation of IEEE 802.11p Physical Layer for Efficient Vehicular Communication;82
10.1;1 Introduction;82
10.2;2 Related Works;84
10.3;3 IEEE 802.11p Transmission Process;85
10.4;4 Results and Discussion;87
10.5;5 Conclusions;89
10.6;References;91
11;A Robust Energy-Efficient Cluster-Based Routing Protocol for Mobile Wireless Sensor Network;92
11.1;1 Introduction;92
11.2;2 Related Work;93
11.3;3 Proposed Protocol;94
11.3.1;3.1 Network Model;94
11.3.2;3.2 Cluster Head Selection and Cluster Formation;95
11.3.3;3.3 Proposed Routing Algorithm;96
11.4;4 Performance Evaluation;96
11.5;5 Conclusion and Future Work;99
11.6;References;99
12;A Resource Allocation Protocol to Meet QoS for Mobile Ad-hoc Network (MANET) in Tactical Scenario;101
12.1;1 Introduction;101
12.2;2 Scenario Description;102
12.3;3 Waveform Design;102
12.3.1;3.1 Network Control Packet (NCP);104
12.3.2;3.2 Traffic Data Packet (TDP);105
12.3.3;3.3 Network Synchronization Packet (NSP);105
12.3.4;3.4 Network Information Packet (NIP);106
12.4;4 Channel Allocation Method;106
12.5;5 Implementation and Results;107
12.6;6 Conclusion;108
12.7;References;109
13;Comparative Study of Anomaly Detection in Wireless Sensor Networks Using Different Kernel Functions;110
13.1;1 Introduction;111
13.2;2 Literature Review and Theory of SMO-SVM;111
13.2.1;2.1 Literature Review;111
13.2.2;2.2 Sequential Minimal Optimization SVM;112
13.3;3 Results and Discussion;114
13.4;4 Conclusion;117
13.5;References;117
14;Proactive Spectrum Handoff-Based MAC Protocol for Cognitive Radio Ad hoc Network;119
14.1;1 Introduction;119
14.2;2 Related Works;120
14.3;3 Problem Statement and System Model;121
14.4;4 Operation of the Proposed Protocol;122
14.4.1;4.1 Method to Check the Selected Channel Is Free or Not;124
14.5;5 Performance Evaluation;124
14.6;6 Conclusion;128
14.7;References;129
15;An Energy-Efficient Framework Based on Random Waypoint Mobility Model in WSN-Assisted IoT;130
15.1;1 Introduction;130
15.2;2 Related Work;132
15.3;3 Mobility Models Classification;133
15.3.1;3.1 Random Based Mobility Model;133
15.3.2;3.2 Temporal Dependencies;133
15.3.3;3.3 Geographic Restrictions;133
15.3.4;3.4 Hybrid Characteristics;133
15.4;4 System Model;133
15.4.1;4.1 Propose Framework;133
15.4.2;4.2 Assumptions;134
15.4.3;4.3 Energy Model;135
15.4.4;4.4 Network Life Time;136
15.5;5 Efficient Communication Algorithm;136
15.6;6 Result Discussion;138
15.7;7 Conclusion;139
15.8;References;140
16;A Scheduling Algorithm Including Deadline of Messages in Vehicular Ad hoc Network;142
16.1;1 Introduction;142
16.2;2 Related Works;144
16.3;3 Problem Statement and System Model;144
16.4;4 Proposed Scheme;145
16.5;5 Results and Discussions;146
16.6;6 Conclusion;149
16.7;References;149
17;Hardware Implementation of Simeck Cipher as a Lightweight Hash Function;151
17.1;1 Introduction;151
17.2;2 Simeck Cipher;152
17.3;3 Simeck Hash Generator;154
17.3.1;3.1 Simeck Architecture;154
17.4;4 Hardware Implementation;155
17.5;5 Security Analysis;156
17.5.1;5.1 Preimage Resistance;156
17.5.2;5.2 Second Preimage Resistance;156
17.5.3;5.3 Collision Attack;156
17.6;6 Conclusion;156
17.7;References;157
18;Comparative Study of PSO-Based Hybrid Clustering Algorithms for Wireless Sensor Networks;158
18.1;1 Introduction;158
18.2;2 Background on Clustering Algorithms;160
18.2.1;2.1 K-Means (KM) [5];160
18.2.2;2.2 K-Harmonic Means (KHM) [15, 16];161
18.2.3;2.3 Fuzzy C-Means (FCM) [13];161
18.2.4;2.4 Particle Swarm Optimization (PSO);162
18.3;3 Results and Discussion;162
18.4;4 Conclusion;164
18.5;References;164
19;Modified Cluster Head Election Scheme Based on LEACH Protocol for MI-Driven UGWSNs;166
19.1;1 Introduction;166
19.1.1;1.1 Motivation;167
19.1.2;1.2 Contributions;168
19.2;2 LEACH Protocol;168
19.2.1;2.1 Proposed Heterogeneous WSN on MI-Based Approach;169
19.3;3 Results and Analysis;171
19.4;4 Conclusion;173
19.5;References;173
20;Stable Energy-Efficient Routing Algorithm for Dynamic Heterogeneous Wireless Sensor Networks;175
20.1;1 Introduction;175
20.2;2 SERA Protocol;176
20.3;3 Simulation Results;178
20.4;4 Conclusion;183
20.5;References;183
21;Comparative Study of Different Routing Protocols for IEEE 802.15.4-Enabled Mobile Sink Wireless Sensor Network;185
21.1;1 Introduction;185
21.2;2 IEEE 802.15.4;186
21.3;3 Routing Protocols;187
21.4;4 Proposed Work;188
21.5;5 Simulation and Parameter Analysis;189
21.6;6 Results and Discussions;190
21.7;7 Conclusion;193
21.8;References;193
22;Cooperative Communications Framework for Industrial Applications;195
22.1;1 Introduction;195
22.2;2 The Proposed Framework;196
22.3;3 Simulation Results and Discussion;200
22.4;4 Conclusion and Future Scope;203
22.5;References;203
23;p-Cycles as Their Own m-Cycles for Fault Detection and Localization in Elastic Optical Networks;204
23.1;1 Introduction;205
23.2;2 p-Cycle Concept in Elastic Optical Networks;206
23.3;3 m-Cycle Concept in Elastic Optical Networks;207
23.4;4 ILP Optimization Model;208
23.5;5 Simulations and Results;209
23.6;6 Conclusion;210
23.7;References;210
24;Analysis of Modified Swastika Shaped Slotted (MSSS) Microstrip Antenna for Multiband and Ultra-wideband Applications;212
24.1;1 Introduction;212
24.2;2 Basic Microstrip Antenna;213
24.3;3 Description of MSSS Microstrip Antenna;214
24.4;4 Results and Discussion;217
24.5;5 Conclusions;220
24.6;References;221
25;A Compact Star Shaped Fractal Antenna for Multiband Applications;222
25.1;1 Introduction;222
25.2;2 Design of Antenna Geometry;223
25.3;3 Results and Discussion;225
25.3.1;3.1 First Iteration Structure;225
25.3.2;3.2 Second Iteration Structure;225
25.3.3;3.3 Third Iteration Structure;227
25.4;4 Conclusion;229
25.5;References;231
26;Dual-Band Modified U-Shaped Slot Antenna with Defected Ground Structure for S-Band Applications;232
26.1;1 Introduction;232
26.2;2 Design of Antenna Geometry;233
26.2.1;2.1 Simple U-Shaped Slot Antenna;233
26.2.2;2.2 Modified U-Shaped Slot Antenna;233
26.2.3;2.3 Fabricated Antenna;235
26.3;3 Results and Discussion;238
26.3.1;3.1 Comparison of Results of Simple U-Shaped and Modified U-Shaped Slot Antenna;238
26.4;4 Conclusion;243
26.5;References;243
27;Localization of Sensor Nodes in WSN Using Area Between a Node and Two Beacons;244
27.1;1 Introduction;244
27.1.1;1.1 Related Work;245
27.1.2;1.2 Novelty;245
27.2;2 Proposed Scheme: Localization Using Area Between a Node and Two Beacons;246
27.3;3 Results and Performance Analysis;248
27.3.1;3.1 Simulation Results and Discussion;249
27.4;4 Conclusion and Future Scope;250
27.5;References;250
28;A Compact Rectangular Patch Antenna with Defected Ground Structure for Multiband Applications;252
28.1;1 Introduction;252
28.2;2 Design of Patch Antenna Geometry;253
28.3;3 Design of Multiband Antenna Using DGS;255
28.3.1;3.1 Patch Antenna with Dumbbell-Shaped DGS;255
28.4;4 Results and Discussion;256
28.4.1;4.1 Return Loss;256
28.4.2;4.2 VSWR;256
28.4.3;4.3 Radiation Pattern;257
28.4.4;4.4 Gain;258
28.4.5;4.5 Efficiency;259
28.5;5 Conclusion;261
28.6;References;261
29;Optimizing Resource Allocation of MIMO-OFDM in 4G and Beyond Systems;263
29.1;1 Introduction;264
29.2;2 Design of Cyclic Prefix;265
29.3;3 Capacity and Energy Efficiency in MU-MIMO;266
29.4;4 Conclusion;270
29.5;References;270
30;Design and Development of 2.1 GHz Horn Antenna;272
30.1;1 Introduction;272
30.2;2 Horn Antenna Design;273
30.3;3 Designing of Horn Antenna;276
30.3.1;3.1 Experimental Setup;276
30.3.2;3.2 Simulation Modeling;277
30.4;4 Result and Analysis;277
30.5;5 Conclusion;280
30.6;References;280
31;Full-Duplex Wireless Communication in Cognitive Radio Networks: A Survey;281
31.1;1 Introduction;282
31.1.1;1.1 Need for Full-Duplex Communication in CRN;282
31.1.2;1.2 Contributions of This Survey Article;283
31.2;2 Cognitive Radio and Full-Duplex (FD) Communication;283
31.2.1;2.1 Cognitive Radio Networks (CRNs);283
31.2.2;2.2 Half-Duplex Versus Full-Duplex Communication;284
31.2.3;2.3 Network Topology;284
31.3;3 Energy Efficiency and Energy Harvesting in FD-CRN;285
31.3.1;3.1 System Model;285
31.3.2;3.2 Analysis of False Alarm Probability and Detection Probability;286
31.4;4 Throughput in Full-Duplex Cognitive Radio Network;289
31.4.1;4.1 Non-cooperative Spectrum Sensing System Model;289
31.4.2;4.2 Cooperative Spectrum Sensing System Model;291
31.5;5 Research Challenges and Issues;293
31.5.1;5.1 Spectrum-Related Issues and Research Directions;293
31.5.2;5.2 PU Activity;293
31.5.3;5.3 Energy Harvesting and Green Communications;294
31.5.4;5.4 Self-interference Suppression (SIS);294
31.6;6 Conclusion;294
31.7;References;295
32;Interaction of Electromagnetic Fields (100 KHz–300 GHz) Exposure with Respect to Human Body Model and Methods for SAR Measurement;298
32.1;1 Introduction;298
32.2;2 Definition of SAR;299
32.3;3 Related Quantity to SAR Measurement;300
32.3.1;3.1 Dielectric Property;300
32.3.2;3.2 Internal Dose;302
32.3.3;3.3 Polarization;303
32.3.4;3.4 Biological Object Geometry and Size;303
32.3.5;3.5 Field Frequency;304
32.3.6;3.6 Source Configuration;304
32.3.7;3.7 Time Intensity Factors;304
32.3.8;3.8 Exposure Environment;305
32.3.9;3.9 Local SAR;305
32.3.10;3.10 Whole Body Averaged SAR;305
32.4;4 Methods for SAR Calculation;305
32.4.1;4.1 Quantities and Parameter to Be Measured;306
32.4.2;4.2 General Considerations About Phantom Modeling;306
32.4.3;4.3 Problem Associated with RF Exposure Measurement;307
32.4.4;4.4 Instrumentation;307
32.4.5;4.5 Measurement Techniques;308
32.5;5 Conclusion;312
32.6;References;312
33;Noise-Induced Training for Weak Signal Detection in Neyman–Pearson Framework;314
33.1;1 Introduction;314
33.2;2 Basic Mathematics;316
33.3;3 Proposed Neural Network-Based Weak Signal Detection Algorithm;317
33.3.1;3.1 Noise Benefitted Neural Network Detector;318
33.4;4 Simulation Results with Illustrative Example;319
33.4.1;4.1 Weak DC Signal with Inherent Non-Gaussian Noise;321
33.5;5 Conclusion;323
33.6;References;324
34;Optimum APD Gain Evaluation of FSO System for Inter-building Laser Communication Application;325
34.1;1 Introduction;325
34.2;2 System and Channel Model;326
34.3;3 Performance Analysis;327
34.4;4 Result and Discussion;328
34.5;5 Conclusion;329
34.6;Appendix;330
34.7;References;331
35;EM Analysis of RF Interaction Structures for Gyrotron Devices;333
35.1;1 Introduction;333
35.2;2 EM Analysis of RF Structures;335
35.2.1;2.1 Tapered Structure;335
35.2.2;2.2 Taper Design;336
35.2.3;2.3 Vane-Loaded Structure;339
35.2.4;2.4 Disc-Loaded Structure;343
35.3;3 Result and Discussion;350
35.3.1;3.1 Tapered Structure;350
35.3.2;3.2 Vane-Loaded Structure;352
35.3.3;3.3 Disc-Loaded Structure;355
35.4;4 Conclusion;357
35.5;References;357
36;LTE-Advanced Carrier Aggregation for Enhancement of Bandwidth;359
36.1;1 Introduction;359
36.1.1;1.1 Related Work;360
36.2;2 System Model;361
36.2.1;2.1 LTE Advanced and Its Features;361
36.2.2;2.2 Carrier Aggregation;361
36.2.3;2.3 Intra-band Contiguous Carrier Aggregation;361
36.2.4;2.4 Intra-band Noncontiguous Carrier Aggregation;362
36.2.5;2.5 Inter-band Carrier Aggregation;363
36.3;3 Performance Analysis;363
36.3.1;3.1 Steps to Optimize the Bandwidth;364
36.4;4 Design Specification and Simulation for Carrier Aggregation;364
36.5;5 Results and Discussion;365
36.6;6 Conclusion;367
36.7;References;369
37;VLSI;370
38;Temperature-Dependent Analog, RF, and Linearity Analysis of Junctionless Quadruple Gate MOSFETs for Analog Applications;371
38.1;1 Introduction;372
38.2;2 Device Structures;372
38.3;3 Temperature-Dependent Performance Analysis;374
38.3.1;3.1 Temperature-Dependent Short Channel Effects (SCEs);374
38.3.2;3.2 Temperature-Dependent Analog Performance Analysis;374
38.3.3;3.3 Temperature-Dependent RF Performance Parameters;377
38.3.4;3.4 Temperature-Dependent Linearity Distortion Analysis;379
38.4;4 Conclusion;381
38.5;References;381
39;A Hardware Minimized Gated Clock Multiple Output Low Power Linear Feedback Shift Register;383
39.1;1 Introduction;383
39.2;2 Traditional LFSR;385
39.3;3 Multiple Output Low Power Parallel LFSR;386
39.4;4 Clock Gated Circuits;387
39.5;5 Proposed Work;387
39.5.1;5.1 Hardware Comparison;388
39.5.2;5.2 Power Calculation;390
39.5.3;5.3 Simulation and Results;390
39.6;6 Conclusion;391
39.7;References;391
40;A Novel Dual Material Extra Insulator Layer Fin Field Effect Transistor for High-Performance Nanoscale Applications;393
40.1;1 Introduction;394
40.2;2 Device Structure;394
40.3;3 Results and Discussions;396
40.4;4 Conclusion;400
40.5;References;400
41;Performance of Double Gate Tunnel FET Devices with Source Pocket;402
41.1;1 Introduction;402
41.2;2 Device Design and Simulation;404
41.3;3 Simulation Result and Discussion;404
41.4;4 Conclusion;410
41.5;References;410
42;The Parameters Affecting Graphene Conductivity for Sensor and High-Frequency Application;411
42.1;1 Introduction;411
42.2;2 Computational Detail;413
42.3;3 Result and Discussion;414
42.4;4 Conclusion;416
42.5;References;416
43;Numerical Measurement of Oscillating Parameters of IMPATT Using Group IV and Group III–V Materials;418
43.1;1 Introduction;418
43.2;2 Modeling and Design Parameters;419
43.3;3 Results and Discussion;421
43.4;4 Conclusion;424
43.5;References;424
44;Analysis of SRAM Cell for Low Power Operation and Its Noise Margin;426
44.1;1 Introduction;426
44.2;2 Minimum Energy Consumption Modeling;427
44.3;3 Short Channel Effect;428
44.4;4 Leakage Current;428
44.5;5 SRAM Cell;432
44.6;6 Static Noise Margin;432
44.7;7 Simulation and Results;433
44.8;8 Conclusion;438
44.9;References;438
45;Fabrication of Nano-petals Zn0.97Cu0.03O Thin Film and Application in Methane Sensing;440
45.1;1 Introduction;440
45.2;2 Experimental;441
45.3;3 Results and Discussions;441
45.4;4 Conclusions;445
45.5;References;445
46;Study and Analysis of Low Power Dynamic Comparator;447
46.1;1 Introduction;447
46.2;2 Clocked Based Dynamic Comparator;448
46.2.1;2.1 Clocked Based Conventional Dynamic Comparator;449
46.2.2;2.2 Clocked Based Double Tail Dynamic Comparator;451
46.2.3;2.3 Double Tail Dynamic Comparator with Enhanced Latch Regeneration Speed;452
46.2.4;2.4 Proposed Comparator;453
46.3;3 Simulation Results and Discussion;454
46.4;4 Conclusion;460
46.5;References;461
47;Tuned Universal Filter Design Using Single Differential Difference Current Conveyor for Sub-GHz Frequency Band;462
47.1;1 Introduction;462
47.2;2 Methodology;463
47.3;3 Proposed Configuration;465
47.4;4 Simulation Results;466
47.5;5 Conclusion;472
47.6;References;472
48;0.5 V Two-Stage Subthreshold Fully Differential Miller Compensated OTA Using Voltage Combiners;473
48.1;1 Introduction;473
48.2;2 Circuit Description;474
48.3;3 Analysis and Design;476
48.3.1;3.1 Differential Gain and Common-Mode Gain for First Stage;476
48.3.2;3.2 Differential Gain and Common-Mode Gain for Second Stage;479
48.3.3;3.3 Total Differential Gain and Common-Mode Gain of the Proposed OTA;479
48.3.4;3.4 Frequency Response;480
48.4;4 Simulation Results;480
48.5;5 Comparison;483
48.6;6 Conclusion;485
48.7;References;489
49;Current Feedback Operational Amplifier-Based Biquadratic Filter;490
49.1;1 Introduction;490
49.2;2 CFOA Circuit Schematics;493
49.2.1;2.1 The Basic Principle of CFOA;493
49.2.2;2.2 Simulation Results;495
49.3;3 Biquadratic Universal Filter Using CFOA Cells;497
49.4;4 Performance Comparison;499
49.5;5 Conclusion;502
49.6;References;503
50;Modeling and FEM-Based Simulations of Composite Membrane Based Circular Capacitive Pressure Sensor;505
50.1;1 Introduction;505
50.2;2 Mathematical Modeling of Sensor;507
50.2.1;2.1 Membrane Deflection and Capacitance Variation;507
50.2.2;2.2 Sensitivity and Nonlinearity;509
50.3;3 Results and Discussion;509
50.3.1;3.1 Analytical Design for Membrane Deflection;510
50.3.2;3.2 FEM Simulations and Comparison with Analytical Results;511
50.4;4 Conclusion;512
50.5;References;513
51;Comparative Study on Structural and Electrical Characteristics of TiO2 Film Deposited by Plasma-Enhanced Atomic Layer Deposition and RF Sputtering;515
51.1;1 Introduction;515
51.2;2 Experimental Procedure;516
51.3;3 Results and Discussion;517
51.4;4 Conclusion;521
51.5;References;521
52;Impact of HfO2 as Passivation Layer in the Simulation of PERC-Type Solar Cell;522
52.1;1 Introduction;522
52.2;2 Solar Cell Simulation;524
52.3;3 Results and Discussion;524
52.3.1;3.1 Al-BSF and PERC Structure;524
52.3.2;3.2 Al-BSF and PERC Structure with HfO2 Passivation Layer;525
52.3.3;3.3 PERC Structure with Al2O3 and HfO2 Passivation Layer;528
52.4;4 Conclusion;529
52.5;References;529
53;Effect of Micro Lever Width on the Mechanical Sensitivity of a MEMS Capacitive Accelerometer;531
53.1;1 Introduction;531
53.2;2 Dynamics of the Device;533
53.2.1;2.1 Device Structure and Working;533
53.2.2;2.2 Analytical Modelling;534
53.3;3 Results and Discussion;536
53.4;4 Conclusion;538
53.5;References;538
54;Noise and Linear Distortion Analysis of Analog/RF Performance in a Two Dimensional Dielectric Pocket Junctionless Double Gate (DP-JLDG) MOSFET to Control SCEs;539
54.1;1 Introduction;539
54.2;2 DP-JLDG Device Structure and Simulation Setup;540
54.3;3 Noise and Linear Distortion Analysis;541
54.4;4 Noise and Linear Distortion Analysis;543
54.5;5 Conclusion;548
54.6;References;552
55;Finite Element Modeling of a Wideband Piezoelectric Energy Harvester for Ambient Vibration Extraction;554
55.1;1 Introduction;554
55.2;2 Device Dynamics;556
55.2.1;2.1 Operation of Device;556
55.2.2;2.2 Device Dimensions;558
55.2.3;2.3 Resonant Frequency Analysis;558
55.3;3 Result and Discussion;559
55.4;4 Conclusion;561
55.5;References;561
56;Impact of Oxide Engineering on Analog/RF Performance of Doping-Less DMDG MOSFET;562
56.1;1 Introduction;562
56.2;2 Device Structure and Simulation Setup;564
56.3;3 Simulation Results;565
56.3.1;3.1 Electrostatic Parameters;565
56.3.2;3.2 Analog/RF Parameters;565
56.4;4 Conclusion;571
56.5;References;571
57;Phosphorene: A Worthy Alternative of Graphene and MoS2 in Surface Plasmon Resonance Sensor;573
57.1;1 Introduction;574
57.2;2 Theory;575
57.2.1;2.1 Sensor Structure and Design Parameter;575
57.2.2;2.2 Mathematical Modeling of Reflectance Curve;576
57.2.3;2.3 Principle of Operation;577
57.2.4;2.4 Performance Parameters;578
57.3;3 Result and Discussion;578
57.4;4 Conclusion;581
57.5;References;581
58;Substrate Integrated Waveguide Wideband and Ultra-Wideband Bandpass Filters Using Multimode Resonator;583
58.1;1 Introduction;583
58.2;2 Design and Analysis of Proposed Filters;584
58.2.1;2.1 Design of Dual-Band Bandpass Filter;585
58.2.2;2.2 Design of Wideband Bandpass Filter Using Quintuple Mode Resonator;587
58.2.3;2.3 Design of Ultra-Wideband Bandpass Filter Using Sextuple Mode Resonator;587
58.3;3 Results and Discussion;588
58.4;4 Conclusion;589
58.5;References;590
59;Impact of Dimensional Effects on Subsurface Leakage Current of a Low-VTH Nanoscale MOSFET Under Accumulation Bias;591
59.1;1 Introduction;591
59.2;2 Device Structure and Simulation Setup;593
59.3;3 Impact of Dimensional Effects on Subsurface Leakage Current;594
59.3.1;3.1 Drain-to-Source Voltage and Gate Length;594
59.3.2;3.2 Source/Drain Junction Depth;597
59.4;4 Conclusion;598
59.5;References;598
60;Dielectric Pocket (DP) Based Channel Region of the Junction-Less Dual Material Double Gate (JLDMDG) MOSFET for Enhanced Analog/RF Performance;600
60.1;1 Introduction;601
60.2;2 Device Structure and Simulation;601
60.3;3 Results and Discussion;603
60.3.1;3.1 Sensitivity Analysis of the Devices;606
60.4;4 Conclusion;606
60.5;References;607
61;Study and Performance Analysis of Carbon Nanotubes (CNTs) as a Global VLSI Interconnects;608
61.1;1 Introduction;608
61.2;2 Physical Structures of CNTs Interconnects;609
61.2.1;2.1 An Isolated SWCNT;609
61.2.2;2.2 SWCNT Bundle;610
61.2.3;2.3 MWCNT Bundle;611
61.3;3 Proposed ESC Model;612
61.4;4 Simulation Setup;614
61.5;5 Results and Discussions;614
61.6;6 Conclusions;617
61.7;References;617
62;Parasitic Series Resistance for 4H-SiC and Diamond-Based IMPATT Diode at Ku Band;619
62.1;1 Introduction;619
62.2;2 Numerical Estimation of Series Resistance;620
62.2.1;2.1 Material Parameters;622
62.3;3 Results and Discussion;623
62.4;4 Conclusion;623
62.5;References;626
63;Design and Analysis of Self-biased OTA for Low-Power Applications;628
63.1;1 Introduction;629
63.2;2 Separate Biased OTA;629
63.3;3 Self-biased OTA;630
63.4;4 Proposed OTA Design;631
63.4.1;4.1 Design of Input Stage;631
63.4.2;4.2 Bulk-Driven MOS Transistor;632
63.4.3;4.3 Proposed Circuit and Discussion;632
63.5;5 Conclusion;637
63.6;References;638
64;Work Function Estimation of Copper-Doped ZnO Thin Film;639
64.1;1 Introduction;639
64.2;2 Experimental Details;640
64.3;3 Result and Discussion;641
64.4;4 Conclusion;645
64.5;References;645
65;Refractive Index and Dielectric Constant Evaluation of RF Sputtered Few Layer MoS2 Thin Film;647
65.1;1 Introduction;647
65.2;2 Experimental Details;648
65.3;3 Result and Discussion;648
65.3.1;3.1 Structural Analysis;648
65.3.2;3.2 Morphological Analysis;649
65.3.3;3.3 Morphological Analysis;650
65.4;4 Conclusion;653
65.5;References;653
66;Design and Optimization of MEMS Piezoelectric Cantilever for Vibration Energy Harvesting Application;655
66.1;1 Introduction;655
66.2;2 Design of Cantilever Beam;656
66.3;3 Analytical Modeling and Functioning;658
66.4;4 Simulation Results;660
66.5;5 Conclusion;660
66.6;References;662
67;Analyzing the Sensitivity of Heterostructure of BP-Graphene/TMDC Layer Coated SPR Biosensor;663
67.1;1 Introduction;663
67.2;2 Proposed SPR Biosensor Design Considerations;665
67.2.1;2.1 Proposed Design for SPR Biosensor;665
67.2.2;2.2 N-Layer Modeling;666
67.3;3 Simulation and Results;667
67.4;4 Conclusion;670
67.5;References;670
68;Short Channel Effects (SCEs) Based Comparative Study of Double-Gate (DG) and Gate-All-Around (GAA) FinFET Structures for Nanoscale Applications;672
68.1;1 Introduction;673
68.2;2 Device Structure And Simulation Setup;674
68.3;3 Results And Discussion;675
68.3.1;3.1 Comparison of GAA FinFETs with DG FinFETs;675
68.3.2;3.2 Cylindrical and Rectangular GAA FinFETs;676
68.4;4 Conclusions;679
68.5;References;679
69;Cross-Coupled Bulk-Degenerated OTA Using Source Follower Auxiliary Pair to Improve Linearity;681
69.1;1 Introduction;681
69.2;2 The Proposed Cross-Coupled Source Follower Bulk-Degenerated (CCSFBD) OTA;682
69.3;3 Simulation Result and Discussion;685
69.4;4 Conclusion;687
69.5;References;688
70;Highly Linear Source-Degenerated OTA with Floating Gate Auxiliary Differential Pair;690
70.1;1 Introduction;690
70.2;2 Basic OTA Structures;691
70.3;3 Proposed OTA;695
70.4;4 Simulation Results;696
70.5;5 Conclusions;698
70.6;References;700
71;Application of Petri Net Model in High-Level Scheduling Algorithm;702
71.1;1 Introduction;702
71.2;2 Literature Survey;703
71.3;3 High-Level Synthesis;704
71.4;4 Control and Data Flow Graphs;705
71.5;5 Scheduling;705
71.5.1;5.1 Scheduling Problem;705
71.5.2;5.2 Scheduling Algorithms;706
71.6;6 Petri-Nets;707
71.6.1;6.1 Components of Petri-Nets;708
71.6.2;6.2 Dynamic Behavior of PN;709
71.6.3;6.3 Petri-Net Model Definition;710
71.6.4;6.4 Analysis Techniques of Petri-Nets;710
71.7;7 Simulation Result;711
71.8;8 Conclusion and Future Scope;712
71.9;References;713
72;Design of Full Adder with Self-checking Capability Using Quantum Dot Cellular Automata;715
72.1;1 Introduction;715
72.2;2 QCA Overview;716
72.2.1;2.1 QCA Wire;717
72.2.2;2.2 Majority Voter;717
72.2.3;2.3 Majority Gate;717
72.2.4;2.4 QCA Clocking;718
72.2.5;2.5 QCA Designer;719
72.2.6;2.6 Reversible Gates and Reversibility;719
72.3;3 Proposed Full Adder and Presentation;720
72.3.1;3.1 Parity-Preserving Reversible Gate;720
72.3.2;3.2 Full Adder Using PPRG;721
72.4;4 Result;722
72.5;5 Conclusion;723
72.6;References;726
73;A Novel Approach for Reversible Realization of 4 × 4 Bit Vedic Multiplier Circuit;728
73.1;1 Introduction;728
73.2;2 Basic Concepts of Vedic Multiplier;729
73.3;3 Reversible Logic Approach;731
73.3.1;3.1 Reversible Logic Gates;732
73.3.2;3.2 Performance Parameters for Reversible Designs;733
73.3.3;3.3 Reversible Circuit Design Approach;735
73.4;4 Proposed Design for 4 × 4 Vedic Multiplier Using Reversible Logic Approach;736
73.4.1;4.1 Reversible Realization of 2 × 2 Size Vedic Multiplier Circuit;736
73.4.2;4.2 Reversible Realization of 4-Bit Adder Circuit;736
73.5;5 Result and Analysis;737
73.6;6 Conclusion;739
73.7;References;739
74;Design and Implementation of 32-bit MIPS-Based RISC Processor;741
74.1;1 Introduction;742
74.1.1;1.1 MIPS Framework;742
74.2;2 Proposed ALU Design;747
74.3;3 Result and Analysis;748
74.4;4 Conclusion;749
74.5;References;750
75;Signal Processing;752
76;Image Compression Using Hybrid Approach and Adaptive Scanning for Color Images;753
76.1;1 Introduction;753
76.2;2 Proposed Method;754
76.2.1;2.1 RGB to YCbCr Conversion;755
76.2.2;2.2 Hybrid Transform;755
76.2.3;2.3 Quantization;757
76.2.4;2.4 Lossless Projected Encoder;758
76.3;3 Experimental Results and Comparison;759
76.4;4 Conclusion and Future Scope;765
76.5;References;765
77;MR Image Denoising Using Adaptive Wavelet Soft Thresholding;767
77.1;1 Introduction;768
77.2;2 Background;769
77.2.1;2.1 NIG Distribution and Goodness-of-Fit Test;770
77.2.2;2.2 MAD Estimator;773
77.3;3 Proposed Methodology;773
77.4;4 Simulated Results;775
77.5;5 Conclusion;776
77.6;References;777
78;A Brief Survey on Hardware Realization of Two-Dimensional Adaptive Filters;778
78.1;1 Introduction;778
78.2;2 Basic Technique of Adaptive Filters;780
78.2.1;2.1 Error Measurements;781
78.2.2;2.2 Adaptive Algorithms;782
78.3;3 A Brief Survey;784
78.4;4 Conclusions;785
78.5;References;785
79;A Survey on  Hinfty Control Techniques;788
79.1;1 Introduction;788
79.1.1;1.1 Finite Horizon Hinfty Control Problem;790
79.2;2 A Brief Survey Report;791
79.3;3 Conclusions;793
79.4;References;793
80;An Efficient High-Speed CORDIC Algorithm Using Parallel-Prefix Adders (PPA);796
80.1;1 Introduction;796
80.2;2 CORDIC Algorithm for Trigonometric Functions;797
80.2.1;2.1 Mathematical Analysis of CORDIC Algorithm;797
80.2.2;2.2 Optimization;799
80.3;3 Adders;799
80.3.1;3.1 Parallel-Prefix Adder Mechanism;800
80.3.2;3.2 Kogge-Stone Adder;800
80.3.3;3.3 Brent-Kung Adder;801
80.3.4;3.4 Han-Carlson Adder;801
80.4;4 Implementation Results;802
80.5;5 Results;803
80.6;6 Conclusion;804
80.7;References;804
81;Stockwell Transform Based Time-Frequency Analysis of the ECG Features for Assessment of Risk of Left Ventricular Hypertrophy in Hypertension Patients;805
81.1;1 Introduction;806
81.2;2 Methodology;808
81.2.1;2.1 Data Acquisition System for Recording of Lead 1 and Lead 2 ECG;809
81.2.2;2.2 Labchart-Based ECG Analysis;809
81.2.3;2.3 Statistical Analysis of ECG Features;810
81.2.4;2.4 FDST-Based Time-Frequency Analysis;810
81.3;3 Result and Discussion;811
81.4;4 Conclusion;816
81.5;References;817
82;Secure Image Restoration and Contrast Enhancement Using Wavelet Transform and Thresholding Technique;819
82.1;1 Introduction;819
82.2;2 Overview of the Proposed Method;820
82.2.1;2.1 Discrete Wavelet Transform;820
82.2.2;2.2 Stationary Wavelet Transform;821
82.2.3;2.3 Thresholding Technique;822
82.2.4;2.4 Threshold Selection;823
82.2.5;2.5 Noise Variance Calculation;823
82.3;3 The Proposed Method;824
82.4;4 Results and Discussion;824
82.5;5 Conclusion;828
82.6;References;828
83;An Efficient Image Watermarking Technique Based on IWT-DCT-SVD;830
83.1;1 Introduction;830
83.2;2 Preliminaries;831
83.2.1;2.1 Integer Wavelet Transform;831
83.2.2;2.2 Discrete Cosine Transform (DCT);832
83.2.3;2.3 Singular Value Decomposition (SVD);832
83.3;3 Proposed Algorithm;833
83.3.1;3.1 Embedding Algorithm;833
83.3.2;3.2 Extraction Algorithm;835
83.4;4 Experimental Results;835
83.5;5 Conclusions;838
83.6;References;838
84;Sparse Matrix Completion for Effective Recommendation System;839
84.1;1 Introduction;840
84.2;2 Related Works;841
84.3;3 Problem Definition;842
84.4;4 Methodology and Implementation;843
84.4.1;4.1 Matrix Completion;843
84.5;5 Results and Evaluation;845
84.6;6 Conclusion;846
84.7;References;847
85;Realization of Efficient Architectures for Digital Filters: A Survey;848
85.1;1 Introduction;848
85.2;2 2-D Digital Filters;850
85.3;3 Separable Digital Filters;859
85.3.1;3.1 Separable Denominator 2-D IIR Filter;859
85.3.2;3.2 Separable 2-D FIR Filter;861
85.4;4 Symmetries in 2-D Digital Filters;861
85.5;5 2-D Block Digital Filter;863
85.6;6 Complexities Comparisons;864
85.7;7 Conclusions;867
85.8;References;868
86;New LMI Criteria to the Global Asymptotic Stability of Uncertain Discrete-Time Systems with Time Delay and Generalized Overflow Nonlinearities;870
86.1;1 Introduction;870
86.2;2 System Description;872
86.3;3 Main Results;875
86.4;4 Numerical Examples;880
86.5;5 Conclusions;880
86.6;References;881
87;Improved DWT-SVD-Based Medical Image Watermarking Through Hamming Code and Chaotic Encryption;883
87.1;1 Introduction;884
87.2;2 Related Research;884
87.3;3 Design and Outline of the Proposed Scheme;885
87.4;4 Results;886
87.5;5 Conclusion;889
87.6;References;889
88;Dynamically Tuned PIDD2 Controller for Single-Link Flexible Manipulator;892
88.1;1 Introduction;892
88.2;2 Modeling the Flexible Link;894
88.2.1;2.1 Single-Link Manipulator System Model;894
88.2.2;2.2 Servomotor Model;894
88.2.3;2.3 Mathematical Model;895
88.3;3 Problem Definition;898
88.3.1;3.1 PID Controller;898
88.3.2;3.2 PIDD2 Controller;899
88.4;4 Tuning of Controllers;900
88.4.1;4.1 Ziegler–Nichols Method;900
88.4.2;4.2 Dynamic Particle Swarm Optimization (DPSO);900
88.4.3;4.3 Dynamic Particle Swarm Optimization Procedure;901
88.5;5 Simulation Results and Discussion;905
88.6;6 Conclusion;907
88.7;References;908
89;Design of an Optimal Microstrip Butterworth Low-Pass Filter Using Colliding Bodies Optimization;910
89.1;1 Introduction;911
89.2;2 Design of Butterworth Low-Pass Filter;912
89.2.1;2.1 Problem Formulation;912
89.2.2;2.2 Colliding Bodies Optimization Algorithm;913
89.2.3;2.3 Proposed Design and Comparisons;915
89.3;3 Simulation Results for the Proposed Microstrip BLPF;916
89.4;4 Conclusion;917
89.5;References;918
90;Short-Term Load Forecasting Using Hybrid ARIMA and Artificial Neural Network Model;920
90.1;1 Introduction;920
90.2;2 Short-Term Load Forecasting;921
90.2.1;2.1 Factors Influencing the Load Behaviour;921
90.2.2;2.2 Need for Short-Term Load Forecasting [5];922
90.3;3 Methodology Used;922
90.3.1;3.1 ARIMA Model;922
90.3.2;3.2 Artificial Neural Network Model;924
90.3.3;3.3 Hybrid Model of ARIMA and Artificial Neural Network;925
90.4;4 Results and Discussion;926
90.5;5 Conclusion;931
90.6;References;931
91;Enhanced XOR-Based Progressive Visual Secret Sharing Using Multiple Decryptions;933
91.1;1 Introduction;933
91.2;2 Related Work;934
91.3;3 Proposed Work;935
91.4;4 Performance Analysis of Proposed Algorithm;937
91.4.1;4.1 Definition (Average Light Transmission);937
91.4.2;4.2 Definition (Area Representation);938
91.4.3;4.3 Definition (Contrast);938
91.4.4;4.4 Definition (Mean Squared Error (MSE));938
91.4.5;4.5 Theorem 1. (Security);939
91.5;5 Experimental Results and Analysis;939
91.6;6 Conclusion;945
91.7;References;946
92;EEG Seizure Detection from Compressive Measurements;947
92.1;1 Introduction;948
92.2;2 Background;949
92.3;3 Proposed Model;949
92.4;4 Results and Discussion;951
92.5;5 Conclusion;952
92.6;References;952
93;A Medical Diagnostic Information System with Computing with Words Using Hesitant Fuzzy Sets;954
93.1;1 Introduction;954
93.2;2 Preliminary;955
93.2.1;2.1 Hesitant Fuzzy Set (HFS) AA2;955
93.2.2;2.2 Hesitant Fuzzy Linguistic Term Set (HFLTS) AA10;956
93.2.3;2.3 Context-Free Grammar;956
93.2.4;2.4 Transformation of Linguistic Expressions into HFLTS AA10;957
93.2.5;2.5 HFLTS Aggregation Operators;957
93.3;3 Medical Diagnosis Decision-Making Model;958
93.3.1;3.1 Problem Formulation;958
93.3.2;3.2 Model Designing;959
93.4;4 Case Studies;960
93.5;5 Conclusion and Future Work;962
93.6;References;962
94;Noise Cancelation Using Adaptive Filter;964
94.1;1 Introduction;964
94.2;2 Adaptive Algorithm;967
94.2.1;2.1 The LMS Algorithm;967
94.2.2;2.2 Normalized LMS Algorithm;967
94.3;3 Adaptive Noise Cancelation;968
94.4;4 Results and Discussion;968
94.4.1;4.1 Simulink Model;968
94.4.2;4.2 Adaptive Noise Cancelation Set for Fetal ECG;969
94.4.3;4.3 Results;970
94.5;5 Conclusion;972
94.6;References;972
95;Abrupt Scene Change Detection Using Spatiotemporal Regularity of Video Cube;974
95.1;1 Introduction;974
95.2;2 Proposed Detection Method;975
95.2.1;2.1 SPREF-Based Detection Method;976
95.2.2;2.2 Boundary Detection in Spatiotemporal Frames;977
95.3;3 Experimental Results;978
95.4;4 Conclusion;984
95.5;References;984
96;A Novel Approach for Compensation of Light Variation Effects with KELM Classification for Efficient Face Recognition;986
96.1;1 Introduction;986
96.2;2 Preliminaries;988
96.2.1;2.1 AHELT;988
96.2.2;2.2 DCT;988
96.2.3;2.3 Fuzzy Filter;989
96.2.4;2.4 KELM;989
96.3;3 Proposed Approach;990
96.4;4 Experimental Results and Analysis;993
96.4.1;4.1 Database;993
96.4.2;4.2 Result;993
96.5;5 Conclusion;994
96.6;References;994
97;A Hybridization of Fuzzy Logic and Deterministic Learning Machine for Face Recognition;996
97.1;1 Introduction;996
97.2;2 Proposed Approach;998
97.2.1;2.1 Feature Extraction Phase;998
97.2.2;2.2 Classification;1000
97.3;3 Experimental Results;1001
97.4;4 Conclusion;1003
97.5;References;1003



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.