Durakbasa / Gençyilmaz / Gençyilmaz Digital Conversion on the Way to Industry 4.0
1. Auflage 2020
ISBN: 978-3-030-62784-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Selected Papers from ISPR2020, September 24-26, 2020 Online - Turkey
E-Book, Englisch, 1018 Seiten
Reihe: Lecture Notes in Mechanical Engineering
ISBN: 978-3-030-62784-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book presents the proceedings from the International Symposium for Production Research 2020. The cross-disciplinary papers presented draw on research from academics and practitioners from industrial engineering, management engineering, operational research, and production/operational management. It explores topics including:
· computer-aided manufacturing;
- Industry 4.0 applications;
- simulation and modeling big data and analytics;
- flexible manufacturing systems;
- decision analysis
- quality management industrial robotics in production systems
- information technologies in production management; and
- optimization techniques.
Presenting real-life applications, case studies, and mathematical models, this book is of interest to researchers, academics,and practitioners in the field of production and operation engineering.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Foreword;6
2;Preface;7
3;Key Technology Roadmap In Production of Future – Industry 4.0;10
4;Organization;12
4.1;Editors;12
4.2;Co-editors;12
4.3;Honorary Chairs;12
4.4;Symposium Chairs;12
4.5;International Honorary Committee;13
4.6;Organizing Committee;13
4.7;This book is prepared for publishing by;13
4.8;Scientific Committee;13
4.9;Reviewers;16
5;Contents;18
6;Big Data and Analytics;27
7;A Hybrid Recommender System: Uniqueness of Choices by Using Machine Learning Technique;28
7.1;Abstract;28
7.2;1 Introduction;28
7.3;2 Statement of the Problem;29
7.3.1;2.1 Definitions;30
7.3.1.1;2.1.1 Vocabulary;30
7.3.1.2;2.1.2 Concepts;31
7.4;3 Proposed Recommender System Algorithm;31
7.5;4 Results and Discussions;34
7.6;5 Conclusions;37
7.7;References;37
8;IoT Based Real-World Emission Analysis of Motorcycles;39
8.1;Abstract;39
8.2;1 Introduction;40
8.3;2 IOT Connection of the Emission Measuring Device;41
8.4;3 Experimental Setup;43
8.5;4 Result of the Emission Monitoring;44
8.6;5 Conclusion;47
8.7;Acknowledgement;48
8.8;References;48
9;Decision Making;49
10;Using Best Worst Method for Location Selection of Piezoelectric Tiles;50
10.1;Abstract;50
10.2;1 Introduction;50
10.3;2 Best Worst Method as a Novel Multi-Criteriia Decision Making;51
10.4;3 The Proposed Methodology;52
10.4.1;3.1 Determination of the Criteria Set;52
10.4.2;3.2 Computation of Weights and Application Results;54
10.5;4 Conclusions;56
10.6;References;57
11;Facility and Capacity Management;58
12;Site Selection for a Training Centre Focused on Industry 4.0 by Using DEMATEL and COPRAS;59
12.1;Abstract;59
12.2;1 Introduction;60
12.3;2 Brief Description About the Digital Transformation Training and Practice Center;61
12.4;3 Site Selection for the Digital Transformation Training and Practice Center;63
12.4.1;3.1 DEMATEL as the Decision-Making Technique and Determining the Criteria to Be Used in Site Selection;64
12.4.2;3.2 COPRAS as the Decision-Making Technique and Evaluation of Site Selection Alternatives;67
12.5;4 Conclusion;70
12.6;Acknowledgement;71
12.7;References;71
13;Fuzzy Logic;73
14;Facility Location for Unmanned Aerial Vehicle Base Stations to Provide Uninterrupted Mobile Communication After Earthquakes;74
14.1;Abstract;74
14.2;1 Introduction;74
14.3;2 Weber Problem;76
14.4;3 Methodology;77
14.4.1;3.1 Determination of Distance in Probabilistic Methods;77
14.4.2;3.2 Determination of Demand in Probabilistic Methods;78
14.4.3;3.3 Fuzzy C-Means;78
14.4.4;3.4 Fuzzy C-Means – Center of Gravity (FCM– COG);79
14.5;4 Case Study;80
14.6;5 Results;80
14.7;6 Conclusion;81
14.8;References;81
15;Healthcare Systems and Management;83
16;A Guide Application in Case of Emergency Health: A Case of Turkey;84
16.1;Abstract;84
16.2;1 Introduction;84
16.3;2 Literature Review;85
16.3.1;2.1 World Healthcare System;85
16.3.2;2.2 Canadian Healthcare System;86
16.3.3;2.3 Turkish Healthcare System;88
16.4;3 Methodology;90
16.4.1;3.1 Turkey’s Mobile Health Application;90
16.4.2;3.2 Needs Analysis;90
16.4.3;3.3 Survey Questions and Analysis;91
16.5;4 Application Execution;93
16.5.1;4.1 Testing Process;94
16.6;5 Conclusion;95
16.7;References;95
17;Parametric Design and Modeling of 3D Printed Prosthetic Finger;99
17.1;Abstract;99
17.2;1 Introduction;99
17.3;2 Design of the Model;100
17.3.1;2.1 Mechanical Design;100
17.3.2;2.2 Parametric Design;103
17.3.3;2.3 Assembling Mechanism;105
17.4;3 Analysis and Results;106
17.5;4 Conclusion;108
17.6;References;108
18;Industrial Applications;110
19;Conceptual Design and Fluid Structure Interaction Analysis of a Solar Powered High-Altitude Pseudo-Satellite (HAPS) UAV Wing Model;111
19.1;Abstract;111
19.2;1 Introduction;111
19.3;2 Competitive Study;113
19.4;3 Wing Loading Estimation;114
19.5;4 Airfoil and Wing Geometry Selection;115
19.5.1;4.1 Airfoil Selection;115
19.5.2;4.2 Wing Geometry;116
19.6;5 Fluid Structure Interaction Analysis;118
19.6.1;5.1 Wing Model;118
19.6.2;5.2 Simulation and Analysis of the Wing Flow Field;119
19.6.3;5.3 Structural Analysis;121
19.7;6 Conclusions;122
19.8;Acknowledgment;122
19.9;References;122
20;Design and Development of Drum Granulator;124
20.1;Abstract;124
20.2;1 Introduction;124
20.3;2 Material and Method;125
20.3.1;2.1 Material;125
20.3.2;2.2 Method;125
20.3.3;2.3 Testing of the Drum Granulator;128
20.4;3 Results and Discussion;130
20.4.1;3.1 Design Process Results;130
20.4.2;3.2 Analysis Process Results;130
20.5;4 Conclusion;131
20.6;References;132
21;Forecasting Electricity Generation and Shares by Energy Resources by Time Series Analysis: A Case-Study of Turkey;133
21.1;Abstract;133
21.2;1 Introduction;133
21.3;2 Literature Review;134
21.4;3 Methodology and Modelling;135
21.5;4 Conclusion;138
21.6;References;138
22;Fused Filament Fabrication of Ceramic Components for Home Use;139
22.1;Abstract;139
22.2;1 Introduction;140
22.2.1;1.1 Objective and Research Question;141
22.2.2;1.2 Relevance of the Question;141
22.2.3;1.3 Methods;142
22.3;2 Fused Filament Fabrication;142
22.3.1;2.1 Process;142
22.3.2;2.2 Extrusion Methods;143
22.3.3;2.3 Ceramics;143
22.3.4;2.4 Binder;143
22.3.5;2.5 Debinding;144
22.3.6;2.6 Sintering;144
22.3.7;2.7 Parameters;145
22.3.8;2.8 Known Problem Areas in the Process;145
22.4;3 Market Situation;146
22.4.1;3.1 Filaments;146
22.4.2;3.2 Industrial Providers;147
22.5;4 Experimental;148
22.5.1;4.1 Print;148
22.5.2;4.2 Debinding;149
22.5.3;4.3 Sintering;150
22.5.4;4.4 Results;150
22.6;5 Discussion;151
22.7;6 Conclusions;153
22.8;References;153
23;Fused Filament Fabrication of Metallic Components for Semi-professional and Home Use;158
23.1;Abstract;158
23.2;1 Introduction;158
23.3;2 Methods;160
23.4;3 Theory;160
23.5;4 Empirical Market Research;161
23.6;5 Experimental;162
23.7;6 Discussion;165
23.8;References;165
24;Increasing of Stud Welding Efficiency in the Body Shop;168
24.1;Abstract;168
24.2;1 Description of the Used Stud Welding Technologies;168
24.2.1;1.1 Arc Welding of Bolts with Stroke;169
24.2.2;1.2 Point-Contact Welding of Studs;170
24.2.3;1.3 Welding of Studs in a Magnetic Field;170
24.3;2 Automation and Robotization of the Process;171
24.4;3 Solution of a Part of the Welding Line Using the Process Simulate Software;172
24.4.1;3.1 Description of the Welding Line;172
24.4.2;3.2 Dynamic Simulation;173
24.4.3;3.3 Setting the Kinematics of the Line Parts;175
24.4.4;3.4 Solution Simulation;176
24.4.5;3.5 Design of Welding Line Optimization;177
24.5;4 Conclusions;178
24.6;Acknowledgment;178
24.7;References;178
25;Measurements of a Finished Garment Using 3D Laser Image Processing;180
25.1;Abstract;180
25.2;1 Introduction;180
25.3;2 Related Works;181
25.4;3 Measurement Strategy;182
25.4.1;3.1 Key Aspects of Quality for the Customer (https://www.inspection-for-industry.com/finished-goods-inspection.html) (2020);182
25.4.2;3.2 Surface Form;182
25.5;4 Edge Detection;183
25.5.1;4.1 Main Steps in Edge Detection;184
25.5.2;4.2 Image Smoothing;185
25.5.3;4.3 Edges and Boundaries;186
25.5.4;4.4 Image Segmentation Using Edge Detection;186
25.5.5;4.5 Using the Hough Transform;187
25.5.6;4.6 Segmentation Methods;188
25.6;5 Measurement of Jacket and Conclusion;189
25.6.1;5.1 Measurement by Using 3D Laser Scanner-Non-contact Blue Laser;189
25.6.2;5.2 Measurement Through Two-Dimensional Image;190
25.7;6 Conclusion;191
25.8;References;192
26;Porosity Measurement by X – Ray Computed Tomography: Different Porosity Analysis Application;193
26.1;Abstract;193
26.2;1 Introduction;193
26.3;2 Experimental Investigation;197
26.4;3 Conclusions;202
26.5;Acknowledgment;203
26.6;References;203
27;Industrial Robotics in Production Systems and Industrial Engineering;204
28;Accuracy Improvement and Process Flow Adaption for Robot Machining;205
28.1;Abstract;205
28.2;1 Introduction;205
28.3;2 Industrial Robots and CNC Machine Tools;206
28.4;3 Calibration and Offline Compensation;208
28.4.1;3.1 Calibration;208
28.4.2;3.2 Offline Compensation;209
28.5;4 Hardware and Software Adaption;212
28.5.1;4.1 Existing Station and Production Process;212
28.5.2;4.2 Enhancements for Automated Process Environment;213
28.6;5 Conclusions;214
28.7;References;214
29;Artificial Neural Networks Based Place Categorization;217
29.1;Abstract;217
29.2;1 Introduction;217
29.3;2 Supervised Learning;218
29.4;3 Convolutional Neural Networks;218
29.5;4 Implemented Algorithms;220
29.5.1;4.1 Naïve Bayes Filter;220
29.5.2;4.2 Multinomial Logistic Regression;220
29.5.3;4.3 Support Vector Machines;221
29.6;5 Results and Discussion;222
29.7;6 Conclusion;223
29.8;References;224
30;Logic Control of an Industrial Automation Cell with ROS as Part of SMEs and Industry 4.0 Interconnection;226
30.1;Abstract;226
30.2;1 Introduction;227
30.2.1;1.1 State of the Art;227
30.2.2;1.2 Related Work;228
30.2.3;1.3 Problem Definition;228
30.3;2 Open Source Process Logic;229
30.3.1;2.1 Basic Concepts;229
30.3.2;2.2 Robot Modeling;230
30.3.3;2.3 Motion Planning;232
30.4;3 Automation Cell;233
30.4.1;3.1 Components of Process Control;233
30.4.2;3.2 Robot Arm System;233
30.4.3;3.3 Model/Visualization/Control GUI;234
30.4.4;3.4 Software Controller/Simulation/Robot Controller;235
30.5;4 Conclusions;236
30.6;5 Next Steps;236
30.7;References;237
31;Robot Retrofitting by Using LinuxCNC Complemented with Arduino/RaspberryPI;238
31.1;Abstract;238
31.2;1 Introduction;239
31.2.1;1.1 The Industrial Automation Need, Yesterday, Today, Tomorrow;239
31.2.2;1.2 Yesterday, the Puma560 Milestone;240
31.2.3;1.3 The “Engelberger Robotics Award”;240
31.2.4;1.4 Today Industrie 4.0;240
31.2.5;1.5 Tomorrow, Automation Robotic Autonomation;241
31.3;2 LinuxCNC;241
31.3.1;2.1 LinuxCNC History and Strong Current Use;241
31.3.2;2.2 LinuxCNC Main Idea and Possibilities Foreseen in the Original Concept;241
31.3.3;2.3 Components;242
31.3.4;2.4 User Interface;242
31.3.5;2.5 Hardware Abstraction Layer;243
31.3.6;2.6 HAL Concepts (LinuxCNC, 2020);243
31.3.7;2.7 HAL Tools;243
31.3.8;2.8 Examining the HAL;244
31.3.9;2.9 Loading Components;244
31.3.10;2.10 Robot Geometry: GENSERKINS;245
31.3.11;2.11 Planning Movement: MOTMOD;245
31.3.12;2.12 Controlling the Step Motors: STEPGEN;245
31.3.13;2.13 Bringing Signals to the Real World: HAL_PARPORT;246
31.3.14;2.14 Other Component, DDT;247
31.3.15;2.15 A Real World Controller;247
31.4;3 Arduino/Raspberry PI, (and Other Similar Hardware);248
31.5;4 Modern Motors, Design and Control of Special Brushless Motors;249
31.6;5 Advantages of Quickly Switching from: The Real World to the Virtual World (Emulator);249
31.7;6 Conclusions;250
31.8;7 Next Steps;251
31.9;References;251
32;Parameter Optimization for the 3D Print of Thermo-Plastic Pellets with an Industrial Robot;252
32.1;Abstract;252
32.2;1 Introduction;253
32.3;2 Problem Description;253
32.4;3 Materials and Methods;254
32.5;4 Practical Realization;255
32.6;5 Print Results;256
32.7;6 Alternative Pellet Extruders;257
32.8;7 Design of New Pellet Extruder;259
32.9;8 Conclusion;261
32.10;References;262
33;Industry 4.0 Applications;264
34;A Comparative Sectoral Analysis of Industry 4.0 Readiness Levels of Turkish SMEs;265
34.1;Abstract;265
34.2;1 Introduction;266
34.3;2 Methodology;268
34.4;3 Implementation and Results;268
34.5;4 Conclusions;275
34.6;Acknowledgment;276
34.7;References;276
35;A Decision Support Tool for Classification of Turkish SMEs’ Industry 4.0 Score Levels;278
35.1;Abstract;278
35.2;1 Introduction;279
35.3;2 Methodology;280
35.3.1;2.1 Data Classification;280
35.3.2;2.2 Performance Evaluation;281
35.3.3;2.3 Estimation Methodologies;282
35.4;3 Implementation and Results;283
35.4.1;3.1 Data Description and Preprocessing;283
35.4.2;3.2 Hyperparameter Tuning;284
35.5;4 Results;285
35.5.1;4.1 Decision Support Tool;285
35.6;5 Conclusions;286
35.7;Acknowledgment;286
35.8;Appendix-I;287
35.9;Appendix-II;287
35.10;Appendix-III;288
35.11;Appendix-IV;288
35.12;Appendix-V;289
35.13;References;289
36;Adaptation of CNC Machine Tools in Educational Center That Matches the Concept of Industry 4.0;291
36.1;Abstract;291
36.2;1 Introduction;291
36.3;2 Problem Analysis;292
36.4;3 Case Study;297
36.5;4 Conclusions;301
36.6;References;301
37;Digital Maturity Assessment Model for Smart Agriculture;303
37.1;Abstract;303
37.2;1 Introduction;303
37.3;2 Smart Agriculture;305
37.4;3 Methodology;305
37.4.1;3.1 Determination of Criteria Set;306
37.4.2;3.2 Determination of Weights;309
37.4.3;3.3 Application;312
37.5;4 Conclusions;313
37.6;References;314
38;Do We Need Synchronization of the Human and Robotics to Make Industry 5.0 a Success Story?;316
38.1;Abstract;316
38.2;1 Introduction;316
38.3;2 Background;317
38.3.1;2.1 Automation of Work;318
38.3.2;2.2 Collaborative Robots (Cobots);319
38.3.3;2.3 Robocollaborators (Coboters);320
38.4;3 Systems and Theories;320
38.4.1;3.1 Socio-Technical Methodology;320
38.4.2;3.2 A Design Method: Reinventing Jobs;321
38.4.3;3.3 Synchronising Cobots and Coboters;323
38.5;4 An Industrial Proposal;323
38.6;5 Conclusions;324
38.7;References;325
39;Evaluation of the Challenges of Companies in Industry 4.0 Transformation by GRA Method;326
39.1;Abstract;326
39.2;1 Introduction;326
39.3;2 Challenges of Companies in Industry 4.0 Transformation;327
39.4;3 Methodology;331
39.5;4 Data Analysis;333
39.6;5 Conclusions;335
39.7;References;336
40;Industry 4.0 in Educational Process;338
40.1;Abstract;338
40.2;1 Introduction;338
40.3;2 Industry Requirements;339
40.3.1;2.1 Requirements for the Area of Production Systems;340
40.3.2;2.2 Qualification and Skills for Industry;341
40.4;3 Implementation Phase;342
40.4.1;3.1 Education in Production Systems;342
40.4.2;3.2 Educational Concept;343
40.5;4 Conclusions;345
40.6;Acknowledgment;345
40.7;References;345
41;Industry 4.0 vs. Society 5.0;347
41.1;Abstract;347
41.2;1 Introduction;347
41.3;2 Industry 4.0 and Society 5.0 Joint Parameters;348
41.3.1;2.1 Big Data;348
41.3.2;2.2 Artificial Intelligence;349
41.3.3;2.3 Internet of Things (IoT);350
41.3.4;2.4 Cloud Computing;350
41.3.5;2.5 Human;351
41.4;3 Industry 4.0;351
41.5;4 Society 5.0;353
41.6;5 Industry 4.0 vs. Society 5.0;354
41.7;6 Conclusions and Related Work;356
41.8;References;357
42;Intelligent Design and Advanced Precision Metrology on the Geometrical Structure of Medical Needles Based on GPS and ISO Standards;360
42.1;Abstract;360
42.2;1 Introduction;361
42.3;2 Methods and Theoretical Parts;362
42.3.1;2.1 Purpose of Using Glass Pre-fillable Syringe with Needle G27;362
42.3.2;2.2 Injection Application Technique of Needle G27 of Glass Pre-fillable Syringe;363
42.3.3;2.3 Functional Requirements and Specifications;363
42.3.4;2.4 Production Process and Geometrical Definition;363
42.3.5;2.5 Geometrical Product Specifications;365
42.3.6;2.6 Micro and Macro Geometrical Assessment Through Measurement Device;367
42.4;3 Results;368
42.5;4 Conclusion and Prospect;374
42.6;References;375
43;Social and Ethical Aspects of Automation;377
43.1;Abstract;377
43.2;1 Introduction;377
43.3;2 Automation;378
43.3.1;2.1 Production 4.(5).0;378
43.3.2;2.2 Humans in Manufacturing Automation;380
43.4;3 Ethics;381
43.5;4 Social Aspects;382
43.5.1;4.1 Robocollaborators;382
43.5.2;4.2 Legal Questions;383
43.6;5 Summary and Outlook;385
43.7;References;386
44;Social Transformation - Industry 4.0;387
44.1;Abstract;387
44.2;1 Industry 4.0;387
44.3;2 The Door to Change;388
44.4;3 How Prepared Are We for Change?;390
44.4.1;3.1 Technological Knowledge Level;391
44.4.2;3.2 Technological Development;391
44.4.3;3.3 Digital Transformation Agility;391
44.5;4 Society 5.0;393
44.6;5 Project Management;394
44.7;6 The Effects of Change on Project Management;394
44.8;7 Conclusion and Evaluation;395
44.9;References;396
45;Strategic Model Proposal Related to IoT Applications in Disaster Management;397
45.1;Abstract;397
45.2;1 Introduction;397
45.3;2 Disaster Management;398
45.4;3 IoT;398
45.5;4 Strategic Model Proposal to Disaster Management with IoT;399
45.6;5 Conclusions;401
45.7;References;402
46;Usage and Applications of the Swarm Robotics Concept at Industrial Level;403
46.1;Abstract;403
46.2;1 Introduction;403
46.3;2 Swarm Robotics;404
46.4;3 Definition of the Problem;405
46.5;4 Related Works;405
46.6;5 Method;405
46.7;6 Application;407
46.8;7 Conclusion;410
46.9;Acknowledgments;411
46.10;References;411
47;Information Management;412
48;Design of a Database Management System for Movie Recommendation Related to the History of Industrial Engineering for Courses;413
48.1;Abstract;413
48.2;1 Introduction;413
48.3;2 Using Movies as Educational Tools;415
48.4;3 Database Management and Suggestion Systems Developed for Movies;416
48.5;4 Method;416
48.5.1;4.1 A Database Management System that Associates Education Topics with Movies and Suggests a Course;417
48.5.2;4.2 The Database Is Created with the Determined Keywords and/or Terms;417
48.5.3;4.3 Associating Courses, Terms, and Films by Establishing a Database;417
48.5.4;4.4 Connecting Database and C#;417
48.5.5;4.5 Building the Application Structure;418
48.6;5 Application;418
48.6.1;5.1 SQLite;418
48.7;6 Conclusions;420
48.8;References;423
49;Process Mining Research in Management Science and Engineering Fields: The Period of 2010–2019;425
49.1;Abstract;425
49.2;1 Introduction;425
49.3;2 Literature Review;426
49.4;3 Methodology;428
49.4.1;3.1 Aim of the Study and Research Questions;428
49.4.2;3.2 Bibliometric Study and Data Collection;428
49.5;4 Results;429
49.5.1;4.1 Main Findings of Descriptive Publication Results;429
49.5.2;4.2 Distribution of Articles by Years;430
49.5.3;4.3 Journal and Source Frequency and Productivity;430
49.5.4;4.4 Author’s Productivity;431
49.5.5;4.5 Organizations and Countries Productivity;431
49.5.6;4.6 Citation Results;433
49.6;5 Discussions and Conclusions;433
49.7;References;435
50;Lean Production;438
51;Waiting as Waste in Lean Production Processes;439
51.1;Abstract;439
51.2;1 Introduction;439
51.3;2 Model Construction;441
51.3.1;2.1 Scheduling and Waiting;441
51.3.2;2.2 Effects of Reduction of Waiting Time;442
51.4;3 Discussion – Case Study;443
51.5;4 Summary and Conclusions;446
51.6;References;446
52;Logistics Management;448
53;A Critical Review of Quality Function Deployment (QFD) Tool Through Logistics Centre Development Projects;449
53.1;Abstract;449
53.2;1 Introduction;449
53.2.1;1.1 What Is the Aim of This Symposium Paper?;449
53.2.2;1.2 How Do We Describe a Logistics Centre?;450
53.2.3;1.3 What Is the Contribution of This Study in Regards with a Logistics Centre Development Project?;450
53.3;2 Review and Assessment Framework for QFD Processes;451
53.3.1;2.1 Data Gathering: Converting VoC into Input for QFD Processes;451
53.3.2;2.2 Relativeness and Connectivity Integrity of QFD Inputs;453
53.3.3;2.3 Priority Check and Ranking the QFD Inputs;454
53.3.4;2.4 Improving the QFD Processes;455
53.3.5;2.5 Interpretation of QFD Process Outputs;456
53.3.6;2.6 Maximizing the Benefits of QFD While Get Rid of the Means that Hinder the Ultimate Success;457
53.3.7;2.7 How We Have Applied the Phases of QFD Methodology in a Logistics Centre Development Project?;458
53.4;3 Conclusions;459
53.5;References;459
54;Two-Phase Fuzzy C-Means and Genetic Algorithm for Food Distribution;461
54.1;Abstract;461
54.2;1 Introduction;461
54.3;2 Problem Definition;463
54.4;3 Proposed Algorithm;463
54.5;4 Results;465
54.6;5 Conclusion;467
54.7;References;467
55;Optimization;469
56;Modelling and Optimization of Dissimilar Welding Between 304L and HSLA-X70 Using Response Surface Methodology;470
56.1;Abstract;470
56.2;1 Introduction;470
56.3;2 Design of Experiments;471
56.4;3 Results and Discussion;473
56.4.1;3.1 Statistical Analysis;473
56.4.2;3.2 Regression Equations;474
56.4.3;3.3 Effect of Welding Parameters on Surface Response Factors;475
56.5;4 Optimization of Welding Conditions;475
56.6;5 Conclusions;478
56.7;References;478
57;Proposing a Pre-emptive Resource Constrained Project Scheduling Problem (PRCPSP) Model to Optimize Manpower and Project Delivery Time (A Case Study);480
57.1;Abstract;480
57.2;1 Introduction and Literature Review;480
57.3;2 Problem Definition;481
57.4;3 Numerical Results and Case Study;485
57.5;4 Conclusions and Further Research;487
57.6;References;487
58;Process Management;488
59;Improvements in Manufacturing Processes by Measurement and Evaluation Studies According to the Quality Management System Standard in Automotive Industry;489
59.1;Abstract;489
59.2;1 Introduction;490
59.3;2 Measurement Systems Analysis (MSA);490
59.4;3 Application of Quantitative MSA;491
59.5;4 Application of Qualitative MSA;494
59.6;5 Conclusions;497
59.7;References;497
60;Improving Business Processes of Human Resources Departments in Turkish Technic Inc.;499
60.1;Abstract;499
60.2;1 Introduction;499
60.3;2 L?terature Rev?ew;500
60.4;3 Methodology;503
60.4.1;3.1 Constraints;503
60.4.2;3.2 Analysis and Research;503
60.4.3;3.3 Main Design;507
60.5;4 Conclus?ons;508
60.6;References;509
61;Improving Manufacturing Process of Mobile Recorder;510
61.1;Abstract;510
61.2;1 Introduction;510
61.3;2 Material and Method;512
61.3.1;2.1 Design of the Interior and Exterior Case;512
61.3.2;2.2 Steps for the Production of Conventional Mobile Recorder;512
61.3.3;2.3 Production of Planned Mobile Recorder;513
61.4;3 Results and Discussion;514
61.5;4 Conclusions;517
61.6;Acknowledgement;517
61.7;References;517
62;Manufacturing Process Development for Thin Film Filaments as a New Product;519
62.1;Abstract;519
62.2;1 Introduction;519
62.3;2 Experimental Method;522
62.4;3 Results;523
62.5;4 Conclusion;525
62.6;References;526
63;Modelling of the High-Chromium Cast Iron Surface Roughness;529
63.1;Abstract;529
63.2;1 Introduction;529
63.3;2 The Experiment;531
63.4;3 Model Implementation and Discussion;535
63.5;4 Conclusion;538
63.6;Acknowledgment;539
63.7;References;539
64;Productivity and Performance Management;541
65;A System Dynamics Model for Long-Term Performance Monitoring of Projects Related to Oil Production in Iran;542
65.1;Abstract;542
65.2;1 Introduction and Literature Review;542
65.3;2 Problem;543
65.4;3 Model;543
65.4.1;3.1 Variables and Reference Trends;544
65.4.2;3.2 Stock-Flow Diagram;546
65.5;4 Model Validation;547
65.6;5 Result and Conclusion;548
65.7;References;550
66;An SME Examination on the Effect of Transition to Automation Systems on Production Performance;551
66.1;Abstract;551
66.2;1 Introduction;552
66.3;2 Production Performance;553
66.4;3 Automation System;553
66.5;4 Implementation;554
66.5.1;4.1 Problems Experienced in Transition to Automation Systems;555
66.5.2;4.2 Effect of Automation System on Production Performance;557
66.6;5 Conclusion and Recommendations;560
66.7;Acknowledgements;561
66.8;References;561
67;Performance Evaluation in the Firms of Turkish Textile Sector;563
67.1;Abstract;563
67.2;1 Introduction;563
67.3;2 Literature Review;564
67.4;3 Material and Method;565
67.5;4 Results and Discussion;566
67.6;5 Conclusion;571
67.7;References;572
68;Some Universities Performance Evaluation of Entrepreneurship and Innovation in Turkey with Multiple Criteria Decision Making Methods;574
68.1;Abstract;574
68.2;1 Introduction;575
68.3;2 Literature Research;577
68.4;3 Purpose of the Research;579
68.4.1;3.1 Methodology of the Study;579
68.4.2;3.2 Data Used in the Research;580
68.4.3;3.3 Evaluation of GYU Performance with Promethee GAIA Method;580
68.5;4 Conclusions and Suggestions;585
68.6;References;587
69;Turkey and Some EU Countries’ Economic Performance Analysis with Multi-criteria Decision Making Methods: Promethee GAIA Application;589
69.1;Abstract;589
69.2;1 Introduction;590
69.3;2 Literature Research;591
69.4;3 Methodology of the Research;595
69.4.1;3.1 Purpose of the Research;595
69.4.2;3.2 Data and Method;595
69.4.3;3.3 Evaluation of Economic Performance with PROMETHEE Method;596
69.4.4;3.4 Comparison of Economic Performance of Countries;599
69.5;4 Conclusion and Comments;600
69.6;References;601
70;Warehouse Planning for Maximum Area Efficiency in the White Goods Sector;603
70.1;Abstract;603
70.2;1 Introduction;603
70.3;2 Literature Review;604
70.4;3 Application;605
70.5;4 Results;607
70.6;5 Future Studies and Suggestions;608
70.7;References;608
71;Quality Management;609
72;Geometric Tolerancing Analysis of Multi-material Components (MMCs) Obtained by Industrial X-Ray Computed Tomography;610
72.1;Abstract;610
72.2;1 Introduction;610
72.3;2 Literature Review;611
72.4;3 Materials and Methods;611
72.5;4 Results and Discussions;612
72.6;5 Conclusions;615
72.7;Acknowledgements;615
72.8;References;615
73;Intelligent Test Automation for Improved Software Quality Assurance;617
73.1;Abstract;617
73.2;1 Introduction: Quality Assurance and Testing;617
73.3;2 Software Testing;618
73.4;3 Automation: Intelligent Testing;619
73.5;4 Current Challenges in Test Automation;620
73.6;5 QiTASC Test Automation: Smart Testing;621
73.6.1;5.1 Why intaQt Automation?;621
73.6.2;5.2 Combining QiTASC Products to Achieve High Levels of Automation;623
73.6.3;5.3 Complex and Multi-context Systems Can Easily Be Automated by intaQt;625
73.6.4;5.4 Further Automation Possibilities in the Agenda;626
73.7;6 Conclusion;626
73.8;References;626
74;The Role of Product Perceived Quality in Building Customer Behavioral Loyalty Across Retail Channels;628
74.1;Abstract;628
74.2;1 Introduction;628
74.3;2 Theoretical Background on Customer Loyalty, Role of Product Quality and Other Factors;630
74.3.1;2.1 Customer Loyalty in Omnichannel Retail;630
74.3.2;2.2 Product Quality and Loyalty;631
74.4;3 Research Methodology;632
74.4.1;3.1 Research Framework and Questions;632
74.4.2;3.2 Research Method and Data;634
74.5;4 Results;635
74.5.1;4.1 Factors of Loyalty in Offline Channel;636
74.5.2;4.2 Factors of Loyalty in Online Channel;638
74.5.3;4.3 Summary of Results and Managerial Implications Concerning Product Quality Role in Building Behavioral Loyalty;638
74.6;5 Conclusions and Discussion;640
74.7;References;641
75;R&D and Technology Management;644
76;Innovation Efficiency in Automotive Industry: The Case of Turkey;645
76.1;Abstract;645
76.2;1 Introduction;645
76.3;2 Literature Review;646
76.4;3 Methodology;647
76.4.1;3.1 CCR Model Results;650
76.4.2;3.2 BCC Model Results;654
76.5;4 Conclusions and Recommendations;658
76.6;References;659
77;Overview of Technology Commercialization Options in Romania;660
77.1;Abstract;660
77.2;1 Introduction;660
77.3;2 Context and Methodology;661
77.4;3 Implementation of the Investigation Methodology and Main Results;662
77.5;4 Discussion of Outcomes and Implication;664
77.6;5 Conclusions;666
77.7;References;666
78;Risk Analysis and Management;667
79;Physical Asset Risk Management: A Case Study from an Asset-Intensive Organization;668
79.1;Abstract;668
79.2;1 Introduction;668
79.3;2 Literature Review;669
79.4;3 Physical Asset Risk Management Process;669
79.4.1;3.1 Determination of Physical Assets’ Risks;670
79.4.2;3.2 Determination of Critical Physical Assets’ Risks;670
79.4.3;3.3 Select RTPs;672
79.5;4 Case Study;674
79.5.1;4.1 Determination of PP’s Physical Assets’ Risks;675
79.5.2;4.2 Determination of PP’s Critical Risks Related to Physical Assets;675
79.5.3;4.3 Select RTPs for PP’s Physical Assets;677
79.6;5 Conclusions;678
79.7;References;678
80;Risk Analysis Application for a Medical Device Manufacturer;680
80.1;Abstract;680
80.2;1 Introduction and Purpose;680
80.3;2 Basic Concepts;681
80.4;3 Risk Management Process;682
80.5;4 Risk Analysis Methods;682
80.6;5 A Case Study on Risk Management Process;684
80.7;6 Conclusion;690
80.8;References;690
81;Scheduling;691
82;Hybrid Flowshop Scheduling Problem at DrPaste;692
82.1;Abstract;692
82.2;1 Introduction;692
82.3;2 NP-Hardness of the Problem;694
82.4;3 Production Environment;694
82.5;4 Genetic Algorithm;697
82.6;5 Actual Size Problem Data;700
82.7;6 Small Size Problem;700
82.8;7 Parameter Tuning;701
82.9;8 Design of User Interface;702
82.10;9 Conclusion;705
82.11;References;705
83;Service System Management;707
84;Effect of Gamification Applications on Individual Performance: Air Transportation Application;708
84.1;Abstract;708
84.2;1 Introduction;708
84.3;2 Gamification Background;709
84.4;3 Proposed Model and Results;710
84.5;4 Conclusions and Recommendations;714
84.6;References;715
85;Simulation and Modelling;717
86;A Brief General Industrial Virtual Reality Applications Overview Including a Simple Factory VR Simulation;718
86.1;Abstract;718
86.2;1 Introduction;718
86.2.1;1.1 Necessity of VR According to Industry 4.0;718
86.2.2;1.2 Digital Twinning for the Visualization Process;719
86.3;2 A Brief Literature Review for Applications of VR;720
86.3.1;2.1 Industrial VR Applications;720
86.3.2;2.2 VR Applications in Industrial Education;722
86.3.3;2.3 Other General VR Applications;724
86.4;3 Experimental Procedure and Results of VR Workshop Simulation;725
86.5;4 Conclusions;727
86.6;References;727
87;Investigation of the Efficiency of Vibration-Assisted Nano-Grinding with Molecular Dynamics;731
87.1;Abstract;731
87.2;1 Introduction;731
87.3;2 Methodology;734
87.4;3 Results and Discussion;736
87.5;4 Conclusions;740
87.6;References;740
88;Supply Chain Management;743
89;A New Approach to Location Routing Problem: Capacitated Periodic Location Routing Problem with Inventory;744
89.1;Abstract;744
89.2;1 Introduction;744
89.3;2 Literature;746
89.4;3 Problem Definition;748
89.5;4 Simulated Annealing for the CPRLPI;752
89.6;5 Discussion;755
89.7;6 Conclusion and Recommendations;757
89.8;Acknowledgment;757
89.9;References;757
90;Smart Manufacturing of Electric Vehicles;760
90.1;Abstract;760
90.2;1 Introduction;761
90.2.1;1.1 Mobility Needs and Trends;761
90.3;2 Microfactory Concept;762
90.3.1;2.1 Cleaner Energy Management;764
90.3.2;2.2 Sustainable Supply Chain Model for Microfactory Network;765
90.4;3 Conclusions;765
90.5;References;766
91;Capstone Projects;767
92;A Multi-sided and Multi-model Assembly Line Balancing Problem;768
92.1;Abstract;768
92.2;1 Introduction;768
92.3;2 Literature Review;770
92.4;3 Problem Formulat?on;771
92.5;4 Computational Results and Decision Support System;774
92.5.1;4.1 Verification;774
92.5.2;4.2 Validation and Improvements;774
92.5.3;4.3 Sensitivity Analysis;776
92.5.4;4.4 Decision Support System;778
92.6;5 Conclusion;779
92.7;Acknowledgments;779
92.8;References;780
93;A Parallel Machine Scheduling Problem for a Plastic Injection Company;781
93.1;Abstract;781
93.2;1 Introduction;781
93.3;2 Problem Definition;782
93.3.1;2.1 Current System Observations and Symptoms;782
93.3.2;2.2 Problem Definition;783
93.4;3 Literature Review;783
93.5;4 Problem Formulation;785
93.6;5 Solution Methodology;787
93.7;6 Decision Support System;789
93.8;7 Verification and Validation;791
93.9;8 Conclusions;792
93.10;Acknowledgment;793
93.11;References;793
94;A Single Machine Job Scheduling Problem with Sequence Dependent Setup Times;795
94.1;Abstract;795
94.2;1 Introduction;795
94.3;2 Problem Definition and Literature Review;796
94.4;3 Problem Formulation;797
94.5;4 Heuristic Algorithms;799
94.5.1;4.1 ATCS Rule Based Heuristic Algorithm;799
94.5.2;4.2 EDD, WEDD, SPT and WSPT Rule based Heuristic Algorithms;802
94.6;5 Computational Experiments;802
94.6.1;5.1 Comparison of Algorithms with Respect to the Optimal Results;803
94.6.2;5.2 Comparison of Algorithms with Time-Limited CPLEX;804
94.7;6 Decision Support System;805
94.8;7 Conclusion and Future Work;807
94.9;References;807
95;An Implementation of Flexible Job Shop Scheduling Problem in a Metal Processing Company;808
95.1;Abstract;808
95.2;1 Introduction;808
95.3;2 Problem Definition;809
95.3.1;2.1 Data Analysis;810
95.3.2;2.2 System Analysis;810
95.4;3 Literature Review;812
95.5;4 Solution Methodology;813
95.5.1;4.1 Mathematical Model;813
95.5.2;4.2 Heuristic Algorithm;815
95.6;5 Verification, Validation and Computational Results;818
95.6.1;5.1 Real Data;819
95.6.2;5.2 Hypothesis Testing;820
95.7;6 Conclusion;820
95.8;Acknowledgment;821
95.9;References;821
96;Analysis and Improvement of Employee Transportation System;822
96.1;Abstract;822
96.2;1 Introduction;822
96.3;2 Problem Definition;823
96.3.1;2.1 Current System and Symptoms of the Problem;823
96.3.2;2.2 Problem Definition;823
96.4;3 Literature Review;824
96.5;4 Problem Formulation;825
96.6;5 Solution Methodology;827
96.7;6 Computational Results;829
96.8;7 Conclusions;831
96.9;References;831
97;Container Demand Forecasting Using Machine Learning Methods: A Real Case Study from Turkey;833
97.1;Abstract;833
97.2;1 Introduction;833
97.3;2 Literature Review;834
97.4;3 Problem Definition;836
97.5;4 Methodology;837
97.5.1;4.1 Machine Learning;837
97.5.1.1;4.1.1 Artificial Neural Networks (ANN);837
97.5.1.2;4.1.2 Decision Trees;838
97.5.1.3;4.1.3 Decision Forest/Random Forest (RF);838
97.5.2;4.2 Linear Regression;838
97.5.3;4.3 Performance Metrics to Evaluate Forecasting Models;839
97.5.3.1;4.3.1 Mean Absolute Error (MAE);839
97.5.3.2;4.3.2 Root Mean Square Error (RMSE);839
97.5.3.3;4.3.3 Relative Absolute Error (RAE);839
97.5.3.4;4.3.4 Relative Squared Error (RSE);839
97.5.3.5;4.3.5 Coefficient of Determination (R2);840
97.6;5 Results;840
97.7;6 Conclusion;841
97.8;Acknowledgment;842
97.9;References;842
98;Customer Order Scheduling in Hybrid Flow Shop Manufacturing System;844
98.1;Abstract;844
98.2;1 Introduction;844
98.3;2 Problem Definition;845
98.4;3 Literature Review;846
98.5;4 Modeling and Solution Methodology;846
98.5.1;4.1 Limitations and Assumptions;846
98.5.2;4.2 Mathematical Model;847
98.5.3;4.3 Genetic Algorithm;849
98.6;5 Verification and Validation;850
98.7;6 Decision Support System and Computational Results;852
98.7.1;6.1 Decision Support System (DSS);852
98.7.2;6.2 Computational Results;854
98.8;7 Conclusions and Future Work;855
98.9;Acknowledgements;856
98.10;References;856
99;Development of Hydraulic Drive Railway Bearings Installation System;857
99.1;Abstract;857
99.2;1 Introduction;857
99.3;2 Material and Method;858
99.3.1;2.1 Material of Pipe of Hydraulic Cylinder and Mounting-Dismounting Fixtures;858
99.4;3 Method;859
99.5;4 Results and Discussion;861
99.5.1;4.1 Design of Hydraulic Drive Railway Bearings Installation System;861
99.5.2;4.2 Static Structural Analysis;862
99.5.3;4.3 Manufacturing;864
99.6;5 Conclusion;865
99.7;Acknowledgment;865
99.8;References;866
100;Improving the Operations in a Logistics Company: A Case Study in Turkey;867
100.1;Abstract;867
100.2;1 Introduction;867
100.3;2 Literature Review;868
100.4;3 QFD Methodology;870
100.5;4 Implementation of the Study;872
100.6;5 Discussions and Conclusion;876
100.7;References;877
101;Improving the Throughput of Pipe and Tube Production: A Case Study;879
101.1;Abstract;879
101.2;1 Introduction;879
101.3;2 Literature Review;880
101.4;3 Problem Formulation;881
101.5;4 Solution Methodology;883
101.6;5 Computational Results;885
101.6.1;5.1 WIP Study;885
101.6.2;5.2 Layout Optimization;886
101.7;6 Conclusion;889
101.8;Acknowledgment;890
101.9;References;890
102;Integrated Transportation and Packaging Problem Modeling and Application;891
102.1;Abstract;891
102.2;1 Introduction;891
102.3;2 Literature Review;892
102.4;3 Problem Formulation;893
102.5;4 Heuristic Algorithm;897
102.6;5 Computational Results;899
102.7;6 Decision Support System;900
102.8;7 Conclusion and Future Work;902
102.9;Acknowledgments;903
102.10;References;903
103;Lean Warehouse Application in a Meat Producer Company;905
103.1;Abstract;905
103.2;1 Introduction;905
103.3;2 Observations and System;906
103.4;3 Problem Definition;907
103.5;4 Literature Review;908
103.5.1;4.1 Lean Management;908
103.5.2;4.2 Value Stream Mapping;910
103.6;5 Methodology;910
103.6.1;5.1 Proposed Methodology: ABC Analysis;910
103.6.2;5.2 Current State Map;914
103.6.3;5.3 Future State Map;916
103.7;6 Conclusion;917
103.8;References;918
104;Location Optimization of Receivers for IoT- Based Infrastructures;921
104.1;Abstract;921
104.2;1 Introduction;921
104.3;2 Literature Review;923
104.4;3 Problem Formulation;924
104.4.1;3.1 Mathematical Modeling;925
104.5;4 Computational Results;930
104.6;5 Decision Support System;930
104.7;6 Conclusions;932
104.8;References;932
105;Makespan Minimization in Manufacturing Process of a Company;934
105.1;Abstract;934
105.2;1 Introduction;934
105.3;2 Literature Review;935
105.4;3 Methodology and Modelling;936
105.5;4 Result of the Mathematical Modeling;940
105.6;5 Conclusion;940
105.7;References;940
106;Multi Model Multiple Line Balancing Problem Modeling and Real-Life Application;942
106.1;Abstract;942
106.2;1 Introduction;942
106.3;2 Problem Definition;943
106.4;3 Literature Review;944
106.5;4 Solution Methodology;945
106.5.1;4.1 Assignment Algorithm;945
106.5.2;4.2 Mathematical Model;947
106.6;5 The Computational Results and Implementation;949
106.7;6 Decision Support System;950
106.8;7 Conclusion and Future Work;951
106.9;Acknowledgment;952
106.10;References;952
107;Quantitative Analysis of Stakeholder Perspective on the University-Industry-Government Collaboration in ?zmir, Turkey;954
107.1;Abstract;954
107.2;1 Introduction;954
107.3;2 Literature Review;955
107.4;3 Methodology;958
107.5;4 Analysis and Findings;960
107.6;5 Conclusions;963
107.7;Acknowledgment;963
107.8;References;963
108;Parcel Delivery Service Quality Assessment;966
108.1;Abstract;966
108.2;1 Introduction;966
108.3;2 Literature Review;967
108.4;3 Methodology;968
108.4.1;3.1 Description of the SERVQUAL Method;968
108.4.2;3.2 Description of the KANO Method;969
108.4.3;3.3 Survey Development;970
108.4.4;3.4 Participants;970
108.5;4 Findings;971
108.5.1;4.1 SERVQUAL Findings;971
108.5.2;4.2 Kano Findings;973
108.6;5 Conclusion;976
108.7;References;977
109;Production Scheduling at a Powder Coating Company;980
109.1;Abstract;980
109.2;1 Introduction;980
109.3;2 Problem Formulation and Solution Methodology;981
109.3.1;2.1 Mathematical Model;982
109.3.2;2.2 Genetic Algorithm;985
109.3.3;2.3 Rule-Based Heuristic;987
109.3.4;2.4 Simulation Model;989
109.3.5;2.5 Validation and Verification;989
109.4;3 Conclusion;991
109.5;Acknowledgment;991
109.6;References;992
110;Ranking of Private Turkish Universities: Proposal of New Indicators;993
110.1;Abstract;993
110.2;1 Introduction;993
110.3;2 Worldwide University Rankings;995
110.4;3 New Indicators Weights and the Methodology of UL Ranking;1000
110.4.1;3.1 Indicators and Weights of UL Ranking;1000
110.4.2;3.2 The methodology of UL Ranking;1001
110.5;4 Results and Analysis;1002
110.6;5 Conclusions;1003
110.7;Acknowledgment;1003
110.8;References;1003
111;Author Index;1006