Buch, Englisch, Band 9, 620 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1232 g
Reihe: Challenges and Advances in Computational Chemistry and Physics
Transcending Length and Time Scales
Buch, Englisch, Band 9, 620 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1232 g
Reihe: Challenges and Advances in Computational Chemistry and Physics
ISBN: 978-1-4020-9784-3
Verlag: Springer Netherlands
This title will be a useful tool of reference for professionals, graduates and undergraduates interested in Computational Chemistry and Physics, Materials Science, Nanotechnology.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Nanotechnologie
- Naturwissenschaften Chemie Physikalische Chemie Quantenchemie, Theoretische Chemie
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Naturwissenschaften Chemie Physikalische Chemie Molekulare Chemische Nanostrukturen
- Naturwissenschaften Physik Thermodynamik Festkörperphysik, Kondensierte Materie
- Naturwissenschaften Chemie Anorganische Chemie Festkörperchemie
Weitere Infos & Material
Hybrid Quantum/Classical Modeling of Material Systems: The “Learn on the Fly” Molecular Dynamics Scheme.- Multiscale Molecular Dynamics and the Reverse Mapping Problem.- Transition Path Sampling Studies of Solid-Solid Transformations in Nanocrystals under Pressure.- Nonequilibrium Molecular Dynamics and Multiscale Modeling of Heat Conduction in Solids.- A Multiscale Methodology to Approach Nanoscale Thermal Transport.- Multiscale Modeling of Contact-Induced Plasticity in Nanocrystalline Metals.- Silicon Nanowires: From Empirical to First Principles Modeling.- Multiscale Modeling of Surface Effects on the Mechanical Behavior and Properties of Nanowires.- Predicting the Atomic Configuration of 1- and 2-Dimensional Nanostructures via Global Optimization Methods.- Atomic-Scale Simulations of the Mechanical Behavior of Carbon Nanotube Systems.- Stick-Spiral Model for Studying Mechanical Properties of Carbon Nanotubes.- Potentials for van der Waals Interaction in Nano-Scale Computation.- Electrical Conduction in Carbon Nanotubes under Mechanical Deformations.- Multiscale Modeling of Carbon Nanotubes.- Quasicontinuum Simulations of Deformations of Carbon Nanotubes.- Electronic Properties and Reactivities of Perfect, Defected, and Doped Single-Walled Carbon Nanotubes.- Multiscale Modeling of Biological Protein Materials – Deformation and Failure.- Computational Molecular Biomechanics: A Hierarchical Multiscale Framework With Applications to Gating of Mechanosensitive Channels of Large Conductance.- Out of Many, One: Modeling Schemes for Biopolymer and Biofibril Networks.