Duintjer Tebbens / Meurant | Krylov Methods for Nonsymmetric Linear Systems | Buch | 978-3-030-55253-4 | sack.de

Buch, Englisch, Band 57, 686 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1042 g

Reihe: Springer Series in Computational Mathematics

Duintjer Tebbens / Meurant

Krylov Methods for Nonsymmetric Linear Systems

From Theory to Computations
1. Auflage 2020
ISBN: 978-3-030-55253-4
Verlag: Springer International Publishing

From Theory to Computations

Buch, Englisch, Band 57, 686 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1042 g

Reihe: Springer Series in Computational Mathematics

ISBN: 978-3-030-55253-4
Verlag: Springer International Publishing


This book aims to give an encyclopedic overview of the state-of-the-art of Krylov subspace iterative methods for solving nonsymmetric systems of algebraic linear equations and to study their mathematical properties.  Solving systems of algebraic linear equations is among the most frequent problems in scientific computing; it is used in many disciplines such as physics, engineering, chemistry, biology, and several others. Krylov methods have progressively emerged as the iterative methods with the highest efficiency while being very robust for solving large linear systems; they may be expected to remain so, independent of progress in modern computer-related fields such as parallel and high performance computing. The mathematical properties of the methods are described and analyzed along with their behavior in finite precision arithmetic. A number of numerical examples demonstrate the properties and the behavior of the described methods. Also considered are the methods’ implementations and coding as Matlab®-like functions. Methods which became popular recently are considered in the general framework of Q-OR (quasi-orthogonal )/Q-MR (quasi-minimum) residual methods.
This book can be useful for both practitioners and for readers who are more interested in theory. Together with a review of the state-of-the-art, it presents a number of recent theoretical results of the authors, some of them unpublished, as well as a few original algorithms. Some of the derived formulas might be useful for the design of possible new methods or for future analysis. For the more applied user, the book gives an up-to-date overview of the majority of the available Krylov methods for nonsymmetric linear systems, including well-known convergence properties and, as we said above, template codes that can serve as the base for more individualized and elaborate implementations.
Duintjer Tebbens / Meurant Krylov Methods for Nonsymmetric Linear Systems jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1. Notation, definitions and tools.- 2. Q-OR and Q-MR methods.- 3. Bases for Krylov subspaces.- 4. FOM/GMRES and variants.- 5. Methods equivalent to FOM or GMRES- 6. Hessenberg/CMRH.- 7. BiCG/QMR and Lanczos algorithms.- 8. Transpose-free Lanczos methods.- 9. The IDR family.- 10. Restart, deflation and truncation.- 11. Related topics.- 12. Numerical comparison of methods.- A. Test matrices and short biographical notices.- References.- Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.