Duggirala / Lal / Radhakrishnan | Radioisotope Thin-Film Powered Microsystems | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 6, 198 Seiten

Reihe: MEMS Reference Shelf

Duggirala / Lal / Radhakrishnan Radioisotope Thin-Film Powered Microsystems


1. Auflage 2010
ISBN: 978-1-4419-6763-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 6, 198 Seiten

Reihe: MEMS Reference Shelf

ISBN: 978-1-4419-6763-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



'Radioisotope Thin-Film Powered Microsystems' describes high energy density microbatteries required for compact long lifetime wireless sensor Microsystems. These microbatteries are presented alongside theories employing high energy density radioisotope thin films in actuating novel electromechanical energy converters. Also discussed are novel wireless sensor architectures that enable long lifetime wireless sensors Microsystems with minimal amounts of radioisotope fuel used. Ultra low-power beta radiation counting clocks are described in order to illustrate the application of radioisotope thin films in realizing the deployment of various components of Microsystems. 'Radioisotope Thin-Film Powered Microsystems' also presents the latest work on 3D silicon electrovoltaic converters and energy density microbatteries required for high-power Microsystems.

Duggirala / Lal / Radhakrishnan Radioisotope Thin-Film Powered Microsystems jetzt bestellen!

Weitere Infos & Material


1;Preface;8
2;Acknowledgement;12
3;Table of Contents;14
4;List of Figures;20
5;List of Tables;34
6;1 Radioactivity and Radioisotopes;35
6.1;1.1 Introduction;35
6.2;1.2 Radioactive Decay;35
6.3;1.3 Radioactive Decay Law;36
6.4;1.4 Types of Radioactive Decay;37
6.4.1;Alpha Decay;37
6.4.2;Beta decay;37
6.4.3;Gamma Decay;38
6.4.4;Electron Capture;38
6.4.5;Spontaneous Fission;39
6.4.6;Neutron Emission;39
6.4.7;Proton Emission;39
6.5;1.5 Interaction of Ionizing Radiation with Matter;40
6.5.1;Alpha Radiation;40
6.5.2;Beta Radiation;41
6.5.3;Gamma Radiation;42
6.5.4;Dose and Dose Rate;42
6.6;1.6 Radiation Safety;43
6.6.1;Safe Radioisotope Fuels Suitable for TerrestrialApplications;44
6.6.2;Safe Radioisotope Fuels Suitable for Long LifetimeMicrobatteries in Terrestrial Applications;44
6.7;1.7 Availability of Radioisotopes;45
6.7.1;1.7.1 Tritium;45
6.7.2;1.7.2 Nickel-63;45
6.7.3;1.7.3 Promethium-147;46
7;2 Radioisotope Thin Films for Microsystems;47
7.1;2.1 Introduction;47
7.2;2.2 Radioisotope Micropower Generation;47
7.2.1;2.2.1 Radioisotope Thin Film Fuels;48
7.2.2;2.2.2 Power Density, Energy Density,and Lifetime of Radioisotope Fuels;48
7.2.3;2.2.3 Review of Radioisotope MicropowerGeneration;50
7.2.3.1;Direct Charge Nuclear Battery;51
7.2.3.2;Direct Conversion Nuclear Battery;52
7.2.3.3;Indirect Conversion Nuclear Battery;55
7.2.4;2.2.4 63Ni Micropower Generation;55
7.2.4.1;MEMS Reciprocating Electro-MechanicalPower Generators;59
7.2.4.2;Multiple Power-Output Integrated RadioisotopeElectro-Mechanical Power Generators (IREMPG);60
7.2.5;2.2.5 147Pm Micropower Generation;63
7.2.5.1;147Pm-Silicon Betavoltaic Microbatteries;63
7.2.5.2;3D Silicon electronvoltaics for 147Pm Microbatteries;64
7.3;2.3 Radioisotope Direct Charged VoltageBiases for Autonomous Sensors;66
7.3.1;2.3.1 63Ni Thin Film Generated VoltageBias for Self-powered Sensors;66
7.4;2.4 Radioisotope Decay Rate based Counting Clock;67
8;3 Radioisotope Micropower Generation:Microfabricated Reciprocating Electro-MechanicalPower Generators;68
8.1;3.1 Introduction;68
8.2;3.2 Design;68
8.2.1;3.2.1 Radioisotope-Charged ElectrostaticActuation Dynamics;70
8.2.2;3.2.2 Piezoelectric Power Generation;75
8.2.3;3.2.3 Energy Conversion Efficiency;77
8.2.4;3.2.4 Radioisotope Fuel Source Design;78
8.2.4.1;Material Selection;79
8.2.4.2;Radioisotope Thin Film Design;80
8.2.5;3.2.5 Piezoelectric Material Selection;82
8.3;3.3 Fabrication;83
8.4;3.4 Testing and Results;86
8.4.1;3.4.1 Radioisotope Actuation Dynamics;90
8.4.2;3.4.2 Power Generation Characteristics;90
8.5;3.5 Discussion;93
8.5.1;3.5.1 Performance Variation with VacuumChamber Pressure;93
8.5.2;3.5.2 Performance Variation withRadioisotope Specific Activity;95
8.5.3;3.5.3 Performance Variation withRadioisotope Fuel Fill Factor;96
8.6;3.6 Conclusions;96
9;4 Radioisotope Micropower Generation:Integrated Radioisotope ActuatedElectro-Mechanical Power Generators;97
9.1;4.1 Introduction;97
9.2;4.2 Principle of Operation;99
9.2.1;4.2.1 Charging Phase: BetavoltaicPower Output;100
9.2.2;4.2.2 Discharge Phase: Wireless RF SignalGeneration;102
9.2.3;4.2.3 Vibration Phase: PiezoelectricPower Generation;103
9.2.4;4.2.4 Energy Conversion Efficiency;104
9.3;4.3 Fabrication;105
9.4;4.4 Testing and Results;108
9.4.1;4.4.1 Betavoltaic Power Generation;110
9.4.2;4.4.2 Wireless RF Pulse Generation;113
9.4.3;4.4.3 IREMPG Energy Conversion Efficiency;117
9.5;4.5 Discussion;117
9.5.1;4.5.1 Betavoltaic Power Generation;117
9.6;4.6 Conclusions;117
9.7;4.7 Future Directions;119
10;5 Radioisotope Micropower Generation: 3D Silicon Electronvoltaics;121
10.1;5.1 Introduction;121
10.2;5.2 Betavoltaics;121
10.2.1;5.2.1 Operation;121
10.2.2;5.2.2 Theory;124
10.3;5.3 Five Milliwatt per cubic centimeter,five Year Lifetime Microbattery Design;128
10.3.1;5.3.1 Radioisotope Thin Film Design;128
10.3.2;5.3.2 3D Silicon Betavoltaic Design;131
10.4;5.4 Fabrication;132
10.5;5.5 Testing and Results;134
10.6;5.6 Discussion;141
10.7;5.7 Conclusions;142
10.8;5.8 Future Directions;143
11;6 Radioisotope Direct Charging: AutonomousWireless Sensors;145
11.1;6.1 Introduction;145
11.2;6.2 63Ni Powered Autonomous WirelessHumidity Sensor;146
11.2.1;6.2.1 63Ni Actuated Reciprocating Cantilever Wireless Transmitter;146
11.2.2;6.2.2 Humidity Sensitive Polymer Capacitor;151
11.2.3;6.2.3 Autonomous Wireless Humidity Sensor;156
11.3;6.3 Conclusions;157
12;7 Radioisotope Decay Rate Based Counting Clock;158
12.1;7.1 Introduction;158
12.2;7.2 Background;159
12.3;7.3 Simple Radioactive Counting Clocks;160
12.3.1;7.3.1 Radioactive Decay: A Poisson Process;160
12.3.2;7.3.2 Clock Architecture;163
12.3.3;7.3.3 Clock Analysis;164
12.3.3.1;Frequency Locking: Output Frequency f;164
12.3.3.2;Phase Noise;165
12.3.3.3;Allan Deviation;167
12.3.4;7.3.4 Simulations;170
12.3.5;7.3.5 Experiments;170
12.3.5.1;Construction of the Simple RCC;170
12.3.5.2;Measurement Setup;174
12.3.5.3;Stability Measurements;174
12.3.5.4;Power Requirements;177
12.3.6;7.3.6 Limitations of Simple RCCs;178
12.4;7.4 Stochastic Resonators;180
12.4.1;7.4.1 Introduction;180
12.4.2;7.4.2 Dead-Time-Modified Poisson Process;182
12.4.3;7.4.3 Output Frequency of Dead-Time-Modified Poisson Process;184
12.4.3.1;Power Spectral Density;184
12.4.3.2;Allan Deviation;184
12.4.4;7.4.4 Simulations;186
12.4.4.1;Real Effects in DTM-RCC;187
12.4.4.2;Stability of Timing Elements;188
12.4.4.3;Finite Detector Speed;189
12.4.4.4;Drift in Amplifier;189
12.4.5;7.4.5 Experimental;190
12.4.5.1;Implementation of Dead-Time;190
12.4.5.2;Stability Measurements;190
12.4.5.3;Power Requirements;191
12.4.6;7.4.6 Limitations of DTM RCC;192
12.5;7.5 Other Methods;193
12.6;7.6 An Aside: True Random NumberGenerators;194
12.6.1;7.6.1 Introduction;194
12.6.1.1;Poisson Distribution of Counts;194
12.6.1.2;Exponential Distribution of Inter-Arrival Times;195
12.6.1.3;Uniform Distribution of Arrival Times;195
12.6.2;7.6.2 True Random Number GeneratorTRNG-E;196
12.6.3;7.6.3 True Random Number GeneratorTRNG-U;198
12.6.4;7.6.4 Conclusions and Future Directions;199
12.7;7.7 Conclusions;201
12.8;7.8 Future Directions;201
13;Appendix A Thin Film 3H Actuated ReciprocatingPiezoelectric Unimorph Converters;202
13.1;A.1 3H Actuation;203
13.2;A.2 Power Generation Characteristics;204
14;Appendix B Macro-scale Hand Assembled Radioisotopeactuated Electro-Mechanical Power Generator;206
14.1;B.1 Assembly;206
14.2;B.2 Testing;206
15;Appendix C Modeling of Radioisotope ActuatedPiezoelectric Unimorph Cantilever DynamicsUsing Simulink;211
15.1;C.1 MATLAB Input File for DefiningRempg Geometrical and MaterialProperty Parameters;213
16;Appendix D MatLab Codes for Counting clock;215
16.1;D.1 Simple Counting Clock;215
16.2;D.2 SR Codes;215
17;Bibliography;218
18;Index;224



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.