Düll / Gwiazda / Marciniak-Czochra | Spaces of Measures and their Applications to Structured Population Models | Buch | 978-1-316-51910-3 | sack.de

Buch, Englisch, Band 36, 300 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 675 g

Reihe: Cambridge Monographs on Applied and Computational Mathematics

Düll / Gwiazda / Marciniak-Czochra

Spaces of Measures and their Applications to Structured Population Models


Erscheinungsjahr 2021
ISBN: 978-1-316-51910-3
Verlag: Cambridge University Press

Buch, Englisch, Band 36, 300 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 675 g

Reihe: Cambridge Monographs on Applied and Computational Mathematics

ISBN: 978-1-316-51910-3
Verlag: Cambridge University Press


Structured population models are transport-type equations often applied to describe evolution of heterogeneous populations of biological cells, animals or humans, including phenomena such as crowd dynamics or pedestrian flows. This book introduces the mathematical underpinnings of these applications, providing a comprehensive analytical framework for structured population models in spaces of Radon measures. The unified approach allows for the study of transport processes on structures that are not vector spaces (such as traffic flow on graphs) and enables the analysis of the numerical algorithms used in applications. Presenting a coherent account of over a decade of research in the area, the text includes appendices outlining the necessary background material and discusses current trends in the theory, enabling graduate students to jump quickly into research.

Düll / Gwiazda / Marciniak-Czochra Spaces of Measures and their Applications to Structured Population Models jetzt bestellen!

Weitere Infos & Material


Notation; Introduction; 1. Analytical setting; 2. Structured population models on state space R+; 3. Structured population models on proper spaces; 4. Numerical methods for structured population models; 5. Recent developments and future perspectives; Appendix A. Topology, compactness and proper spaces; Appendix B. Functional analysis; Appendix C. Bounded Lipschitz and Hölder functions; Appendix D. Results on approximation with polynomials; Appendix E. Differential geometry; Appendix F. Measure theory; Appendix G. Weaker topologies on spaces of measures; Appendix H. The Bochner integral; Appendix I. Semigroups; Appendix J. Supplement to Chapter 2; Appendix K. Technical proofs from Chapter 3; References; Index.


Marciniak-Czochra, Anna
Anna Marciniak-Czochra is Professor of Applied Mathematics at Heidelberg University and Head of the research group 'Applied Analysis and Modelling in Biosciences' at the Institute of Applied Mathematics (IAM), Interdisciplinary Center of Scientific Computing (IWR) and BIOQUANT Center, Heidelberg University. She is the deputy director of the IAM and a member of the Board of the European Society for Theoretical and Mathematical Biology (ESMTB). Her interdisciplinary expertise lies in the areas of applied mathematics and mathematical and computational biosciences.

Gwiazda, Piotr
Piotr Gwiazda is Professor at the Institute of Mathematics of the Polish Academy of Sciences and Head of the Department of Differential Equations. His fields of research include the topics of weak, renormalized and measure-valued solutions to nonlinear PDEs, with a focus on PDEs arising from fluid and solid mechanics as well as mathematical biology.

Skrzeczkowski, Jakub
Jakub Skrzeczkowski researches at the University of Warsaw under the supervision of Piotr Gwiazda. His work deals with measure solutions of structured population models, singular limits in reaction-diffusion systems and parabolic PDEs in a non-standard growth setting.

Düll, Christian
Christian Düll is a member of the research team of Anna Marciniak-Czochra at Heidelberg University. He works with structured population models in a measure setting and optimal transport problems.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.