Dudoit / Laan | Multiple Testing Procedures with Applications to Genomics | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 590 Seiten

Reihe: Springer Series in Statistics

Dudoit / Laan Multiple Testing Procedures with Applications to Genomics


1. Auflage 2007
ISBN: 978-0-387-49317-6
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 590 Seiten

Reihe: Springer Series in Statistics

ISBN: 978-0-387-49317-6
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book establishes the theoretical foundations of a general methodology for multiple hypothesis testing and discusses its software implementation in R and SAS. These are applied to a range of problems in biomedical and genomic research, including identification of differentially expressed and co-expressed genes in high-throughput gene expression experiments; tests of association between gene expression measures and biological annotation metadata; sequence analysis; and genetic mapping of complex traits using single nucleotide polymorphisms. The procedures are based on a test statistics joint null distribution and provide Type I error control in testing problems involving general data generating distributions, null hypotheses, and test statistics.

Dudoit / Laan Multiple Testing Procedures with Applications to Genomics jetzt bestellen!

Weitere Infos & Material


1;Preface;7
1.1;Intended readership;8
1.2;Overview;8
1.3;Supplements;14
1.4;Acknowledgments;14
2;Contents;16
3;List of Figures;26
4;List of Tables;30
5;1 Multiple Hypothesis Testing;33
5.1;1.1 Introduction;33
5.2;1.2 Multiple hypothesis testing framework;41
6;2 Test Statistics Null Distribution;80
6.1;2.1 Introduction;80
6.2;2.2 Type I error control and choice of a test statistics null distribution;83
6.3;2.3 Null shift and scale-transformed test statistics null distribution;91
6.4;2.4 Null quantile-transformed test statistics null distribution;100
6.5;2.5 Null distribution for transformations of the test statistics;106
6.6;2.6 Testing single-parameter null hypotheses based on t- statistics;110
6.7;2.7 Testing multiple-parameter null hypotheses based on F- statistics;118
6.8;2.8 Weak and strong Type I error control and subset pivotality;125
6.9;2.9 Test statistics null distributions based on bootstrap and permutation data generating distributions;129
7;3 Overview of Multiple Testing Procedures;140
7.1;3.1 Introduction;140
7.2;3.2 Multiple testing procedures for controlling the number of Type I errors: FWER;143
7.3;3.3 Multiple testing procedures for controlling the number of Type I errors: gFWER;165
7.4;3.4 Multiple testing procedures for controlling the proportion of Type I errors among the rejected hypotheses: FDR;176
7.5;3.5 Multiple testing procedures for controlling the proportion of Type I errors among the rejected hypotheses: TPPFP;180
8;4 Single-Step Multiple Testing Procedures for Controlling General Type I Error Rates, T( FVn );192
8.1;4.1 Introduction;192
8.2;4.2 T( FVn )- controlling single- step procedures;194
8.3;4.3 Adjusted p-values for T( FVn )- controlling single- step procedures;200
8.4;4.4 T( FVn )- controlling bootstrap- based single- step procedures;205
8.5;4.5 T( FVn )- controlling two- sided single- step procedures;218
8.6;4.6 Multiple hypothesis testing and confidence regions;222
8.7;4.7 Optimal multiple testing procedures;228
9;5 Step-Down Multiple Testing Procedures for Controlling the Family- Wise Error Rate;230
9.1;5.1 Introduction;230
9.2;5.2 FWER-controlling step-down common-cut-off procedure based on maxima of test statistics;233
9.3;5.3 FWER-controlling step-down common-quantile procedure based on minima of unadjusted p- values;243
9.4;5.4 FWER-controlling step-up common-cut-off and common- quantile procedures;255
9.5;5.5 FWER-controlling bootstrap-based step-down procedures;258
10;6 Augmentation Multiple Testing Procedures for Controlling Generalized Tail Probability Error Rates;265
10.1;6.1 Introduction;265
10.2;6.2 Augmentation multiple testing procedures for controlling the generalized family- wise error rate, gFWER( k) = Pr( Vn > k);272
10.3;6.3 Augmentation multiple testing procedures for controlling the tail probability for the proportion of false positives, TPPFP( q) = Pr( Vn/ Rn > q);275
10.4;6.4 TPPFP-based multiple testing procedures for controlling the false discovery rate, FDR = E[ Vn/Rn];281
10.5;6.5 General results on augmentation multiple testing procedures;286
10.6;6.6 gTP-based multiple testing procedures for controlling the generalized expected value, gEV ( g) = E[ g( Vn, Rn)];299
10.7;6.7 Initial FWER- and gFWER-controlling multiple testing procedures;302
10.8;6.8 Discussion;303
11;7 Resampling-Based Empirical Bayes Multiple Testing Procedures for Controlling Generalized Tail Probability Error Rates;318
11.1;7.1 Introduction;318
11.2;7.2 gTP-controlling resampling-based empirical Bayes procedures;320
11.3;7.3 Adjusted p-values for gTP-controlling resampling- based empirical Bayes procedures;329
11.4;7.4 Finite sample rationale for gTP control by resampling- based empirical Bayes procedures;332
11.5;7.5 Formal asymptotic gTP control results for resampling- based empirical Bayes procedures;335
11.6;7.6 gTP-controlling resampling-based weighted empirical Bayes procedures;341
11.7;7.7 FDR-controlling empirical Bayes procedures;342
11.8;7.8 Discussion;347
12;Color Plates;349
13;8 Simulation Studies: Assessment of Test Statistics Null Distributions;373
13.1;8.1 Introduction;373
13.2;8.2 Bootstrap-based multiple testing procedures;376
13.3;8.3 Simulation Study 1: Tests for regression coefficients in linear models with dependent covariates and error terms;379
13.4;8.4 Simulation Study 2: Tests for correlation coefficients;388
14;9 Identification of Differentially Expressed and Co- Expressed Genes in High- Throughput Gene Expression Experiments;395
14.1;9.1 Introduction;395
14.2;9.2 Apolipoprotein AI experiment of Callow et al. (2000);396
14.3;9.3 Cancer microRNA study of Lu et al. (2005);430
15;10 Multiple Tests of Association with Biological Annotation Metadata;441
15.1;10.1 Introduction;441
15.2;10.2 Statistical framework for multiple tests of association with biological annotation metadata;445
15.3;10.3 The Gene Ontology;453
15.4;10.4 Tests of association between GO annotation and differential gene expression in ALL;467
15.5;10.5 Discussion;481
16;11 HIV-1 Sequence Variation and Viral Replication Capacity;505
16.1;11.1 Introduction;505
16.2;11.2 HIV-1 dataset of Segal et al. (2004);505
16.3;11.3 Multiple testing procedures;507
16.4;11.4 Software implementation in SAS;509
16.5;11.5 Results;510
16.6;11.6 Discussion;512
17;12 Genetic Mapping of Complex Human Traits Using Single Nucleotide Polymorphisms: The ObeLinks Project;516
17.1;12.1 Introduction;516
17.2;12.2 The ObeLinks Project;518
17.3;12.3 Multiple testing procedures;522
17.4;12.4 Results;524
17.5;12.5 Discussion;528
18;13 Software Implementation;545
18.1;13.1 R package multtest;545
18.2;13.2 SAS macros;555
19;A Summary of Multiple Testing Procedures;558
20;B Miscellaneous Mathematical and Statistical Results;575
20.1;B.1 Probability inequalities;575
20.2;B.2 Convergence results;576
20.3;B.3 Properties of floor and ceiling functions;577
21;C SAS Code;579
22;References;584
23;Author Index;598
24;Subject Index;601



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.