E-Book, Englisch, 988 Seiten, eBook
Du / Swamy Neural Networks and Statistical Learning
2. Auflage 2019
ISBN: 978-1-4471-7452-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 988 Seiten, eBook
ISBN: 978-1-4471-7452-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
Introduction.- Fundamentals of Machine Learning.- Perceptrons.- Multilayer perceptrons: architecture and error backpropagation.- Multilayer perceptrons: other learing techniques.- Hopfield networks, simulated annealing and chaotic neural networks.- Associative memory networks.- Clustering I: Basic clustering models and algorithms.- Clustering II: topics in clustering.- Radial basis function networks.- Recurrent neural networks.- Principal component analysis.- Nonnegative matrix factorization and compressed sensing.- Independent component analysis.- Discriminant analysis.- Support vector machines.- Other kernel methods.- Reinforcement learning.- Probabilistic and Bayesian networks.- Combining multiple learners: data fusion and emsemble learning.- Introduction of fuzzy sets and logic.- Neurofuzzy systems.- Neural circuits.- Pattern recognition for biometrics and bioinformatics.- Data mining.