Driel / Fan / Zhang | Solid State Lighting Reliability Part 2 | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 3, 603 Seiten

Reihe: Solid State Lighting Technology and Application Series

Driel / Fan / Zhang Solid State Lighting Reliability Part 2

Components to Systems
1. Auflage 2018
ISBN: 978-3-319-58175-0
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark

Components to Systems

E-Book, Englisch, Band 3, 603 Seiten

Reihe: Solid State Lighting Technology and Application Series

ISBN: 978-3-319-58175-0
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark



In the past four years we have witnessed rapid development in technology and significant market penetration in many applications for LED systems. New processes and new materials have been introduced; new standards and new testing methods have been developed; new driver, control and sensing technologies have been integrated; and new and unknown failure modes have also been presented. In this book, Solid State Lighting Reliability Part 2, we invited the experts from industry and academia to present the latest developments and findings in the LED system reliability arena. Topics in this book cover the early failures and critical steps in LED manufacturing; advances in reliability testing and standards; quality of colour and colour stability; degradation of optical materials and the associated chromaticity maintenance; characterization of thermal interfaces; LED solder joint testing and prediction; common failure modes in LED drivers; root causes for lumen depreciation; corrosion sensitivity of LED packages; reliability management for automotive LEDs, and lightning effects on LEDs.This book is a continuation of Solid State Lighting Reliability: Components to Systems (published in 2013), which covers reliability aspects ranging from the LED to the total luminaire or system of luminaires. Together, these two books are a full set of reference books for Solid State Lighting reliability from the performance of the (sub-) components to the total system, regardless its complexity. 



Willem Dirk van Driel is the Solid State Lightning Reliability Program Manager for Philips Lighting Eindhoven, and is Assistant Professor of Micro/Nano Reliability at Delft University of Technology, in the Electronic Components, Technology and Materials Department. Xuejun Fan is Professor in the Department of Mechanical Engineering at Lamar University. G.Q. Zhang is Professor of Micro/Nanoelectronics, System Integration and Reliability (MSI&R) at  the Delft University of Technology.

Driel / Fan / Zhang Solid State Lighting Reliability Part 2 jetzt bestellen!

Weitere Infos & Material


1;Preface;5
1.1;Personal Acknowledgments;7
2;Contents;8
3;Chapter 1: Quality and Reliability in Solid-State Lighting: Qua Vadis?;11
3.1;1.1 What We Predicted: A New Era in Lighting;11
3.2;1.2 What Is the Current Status?;15
3.3;1.3 What´s Next: SSL Reliability, Qua Vadis?;18
3.4;1.4 Final Remarks;22
3.5;References;22
4;Chapter 2: Chip-Level Degradation of InGaN-Based Optoelectronic Devices;24
4.1;2.1 Defect Generation;24
4.1.1;2.1.1 Increase in Non-radiative Losses;25
4.1.2;2.1.2 Increase in Shunt Current;26
4.2;2.2 Diffusion Processes;27
4.3;2.3 Degradation of the Ohmic Contacts;32
4.4;2.4 Electromigration;34
4.5;2.5 Cracking Due to Mismatch;36
4.6;2.6 Electrostatic Discharge (ESD);38
4.6.1;2.6.1 Role of Defects and Internal Capacitance;39
4.6.2;2.6.2 ESD Effects;41
4.6.3;2.6.3 Structure Improvements;43
4.7;2.7 Electrical Overstress (EOS);46
4.8;2.8 Reverse-Bias Degradation;47
4.9;2.9 Conclusions;49
4.10;References;51
5;Chapter 3: LED Early Failures: Detection, Signature, and Related Mechanisms;58
5.1;3.1 Introduction;58
5.2;3.2 Early Failures in Reliability Studies;60
5.3;3.3 Early Failures from an LED Manufacturing Variability Point of View;62
5.3.1;3.3.1 Batch-to-Batch Variability;62
5.3.1.1;3.3.1.1 Batch, Lot, Wafer, and Die Definitions;62
5.3.1.2;3.3.1.2 Lot-to-Lot, Wafer-to-Wafer, and Within-Wafer Variabilities;63
5.3.1.3;3.3.1.3 Tool-to-Tool Variability;63
5.3.2;3.3.2 Soft Fails;65
5.3.2.1;3.3.2.1 Wafer Substrate;65
5.3.2.2;3.3.2.2 Chemical Mechanical Polishing (CMP);65
5.3.2.3;3.3.2.3 Lithography Misalignment;66
5.3.2.4;3.3.2.4 Chemicals Used in Lithography Developers, CMP or Etchants;66
5.3.2.5;3.3.2.5 Standard Metrology Limitations;67
5.3.2.6;3.3.2.6 Crystal Growth;67
5.3.3;3.3.3 Hard Fails;68
5.3.3.1;3.3.3.1 Process Improvement: Release to Manufacturing;68
5.3.3.2;3.3.3.2 Process Recipe Error;69
5.3.4;3.3.4 Early Failure from an LED Assembly Side: Detection Methods;70
5.3.5;3.3.5 Electrical Characterizations and Model;71
5.3.6;3.3.6 Experiment;73
5.4;3.4 Early Failure: Signature and Related Defects;75
5.4.1;3.4.1 Electrical Signatures;75
5.4.2;3.4.2 Identification of Early Failure-Related Defects;76
5.4.3;3.4.3 Relation Between Initial Defects and Lower Lifetime;80
5.5;3.5 Conclusion;81
5.6;References;83
6;Chapter 4: Advances in Reliability Testing and Standards Development for LED Packages and Systems;85
6.1;4.1 State of the Art of the Reliability Test Standards;86
6.2;4.2 Advanced Lumen Maintenance Lifetime Estimation Methods;91
6.3;4.3 A Temperature-Driven Accelerated Test Method;94
6.3.1;4.3.1 Boundary Curve Definition;94
6.3.2;4.3.2 Two-Stage Process;96
6.3.3;4.3.3 Parameters Determination;97
6.3.4;4.3.4 Determination of the Accelerated Time;98
6.3.5;4.3.5 Verification;100
6.4;4.4 A SPD-Based Degradation Prediction Method;105
6.4.1;4.4.1 Spectral Power Distribution Models;107
6.4.2;4.4.2 Degradation Prediction;113
6.5;4.5 Conclusions;117
6.6;References;119
7;Chapter 5: Reliability and Lifetime Assessment of Optical Materials in LED-Based Products;123
7.1;5.1 LED and the LED Landscape;124
7.2;5.2 White Light LEDs;127
7.3;5.3 Failure Mechanisms in LEDs;127
7.4;5.4 Aging of Optical Materials and Origins of Color Shift;128
7.4.1;5.4.1 Contaminations;129
7.4.2;5.4.2 Interface Delamination;129
7.4.3;5.4.3 Discoloration;130
7.5;5.5 Yellowing of Encapsulant/Lens;132
7.6;5.6 Terms and Definitions of Color Shifting;135
7.7;5.7 Reliability Performance of LEDs;139
7.8;5.8 Highly Accelerated Stress Test (HAST) Setup;140
7.9;5.9 Reliability Models;141
7.9.1;5.9.1 Effect of Light Intensity on the Acceleration of Aging Test;143
7.9.2;5.9.2 Effect of Light Intensity on the Time to Failure of Remote Phosphor;144
7.10;5.10 Concluding Remarks;144
7.11;References;145
8;Chapter 6: The Influence of Phosphor and Binder Chemistry on the Aging Characteristics of Remote Phosphor Products;148
8.1;6.1 Introduction;148
8.2;6.2 Methods;149
8.2.1;6.2.1 Wet High-Temperature Operational Lifetime (WHTOL) Test;150
8.2.2;6.2.2 Testing the RPD Samples;151
8.3;6.3 Results;151
8.3.1;6.3.1 Cool White Remote Phosphor Samples;152
8.3.2;6.3.2 Warm White Remote Phosphor Samples;155
8.3.3;6.3.3 FTIR Studies of Binder Properties;158
8.4;6.4 Discussion;160
8.5;6.5 Conclusions;162
8.6;References;163
9;Chapter 7: Thermal Characterization of Die-Attach Material Interface of High-Power Light-Emitting Diodes;165
9.1;7.1 Introduction;165
9.2;7.2 Transient Behavior of LED Junction Temperature;166
9.2.1;7.2.1 Transient Voltage Behavior of LED;167
9.2.2;7.2.2 Measurement of Transient LED Junction Temperature;167
9.3;7.3 Transient Domain for Inverse Approach;171
9.3.1;7.3.1 Hybrid Analytical/Numerical Model;172
9.3.2;7.3.2 DTI Dominant Domain;175
9.4;7.4 Inverse Approach to Determine the Resistance of DTI;177
9.5;7.5 Validity of DTI Resistance;179
9.6;7.6 Conclusion;180
9.7;References;182
10;Chapter 8: Color Quality;185
10.1;8.1 Introduction;185
10.2;8.2 Chromaticity;186
10.2.1;8.2.1 Chromaticity Coordinates and Chromaticity Diagrams;186
10.2.2;8.2.2 Chromaticity Specifications for Lighting Products;189
10.2.3;8.2.3 Correlated Color Temperature;190
10.2.4;8.2.4 Duv;191
10.2.5;8.2.5 Perception of White Light Chromaticity;192
10.2.6;8.2.6 Color Difference of Light Source;194
10.3;8.3 Object Color Specifications;195
10.4;8.4 Color Rendering Characteristics;197
10.4.1;8.4.1 Color Rendering Index;197
10.4.2;8.4.2 Color Preference and Perception;199
10.5;8.5 Luminous Efficacy;201
10.6;8.6 Color Characteristics of Single Color LEDs;202
10.6.1;8.6.1 Dominant Wavelengthlambdad;202
10.6.2;8.6.2 Centroid Wavelengthlambdac;204
10.6.3;8.6.3 Peak Wavelengthlambdap;204
10.7;References;204
11;Chapter 9: LED-Based Luminaire Color Shift Acceleration and Prediction;206
11.1;9.1 Introduction;207
11.2;9.2 Breakdown Method for Color Shift and Mechanism Investigation;207
11.2.1;9.2.1 Materials and Methods;207
11.2.2;9.2.2 Results and Discussions;210
11.2.2.1;9.2.2.1 PMMA;210
11.2.2.2;9.2.2.2 Microcellular PET;212
11.2.2.3;9.2.2.3 LED Package;215
11.3;9.3 A Novel Approach for Color Shift Investigation on LED-Based Luminaires;215
11.3.1;9.3.1 Materials and Methods;215
11.3.2;9.3.2 Results and Discussions;218
11.3.2.1;9.3.2.1 Measured Results for Color Shift of Downlights After Aging;218
11.3.2.2;9.3.2.2 Inputs for Simulation;219
11.3.2.3;9.3.2.3 Color Shift Results;220
11.3.2.4;9.3.2.4 Comparison and Discussion;221
11.4;9.4 Luminaire Color Shift Acceleration and Prediction;222
11.5;9.5 Conclusions;223
11.6;References;223
12;Chapter 10: Chromaticity Maintenance in LED Devices;225
12.1;10.1 Introduction;225
12.2;10.2 Representing Chromaticity Shifts;227
12.3;10.3 LED-Induced Chromaticity Shifts;229
12.3.1;10.3.1 Experimental Studies;230
12.3.2;10.3.2 LED Chromaticity Shift Mechanisms;233
12.3.3;10.3.3 Causes of Chromaticity Shifts in LEDs;236
12.3.3.1;10.3.3.1 LED Structures;236
12.3.3.2;10.3.3.2 LED Package Substrates;237
12.3.3.3;10.3.3.3 Phosphors;237
12.3.3.4;10.3.3.4 Encapsulants;239
12.3.3.5;10.3.3.5 Contaminants;239
12.4;10.4 Projecting Chromaticity Shifts in LEDs;240
12.5;10.5 Optical Materials and Chromaticity Shifts;240
12.5.1;10.5.1 Lens Aging;242
12.5.2;10.5.2 Modeling the Degradation of Lens Materials;244
12.5.3;10.5.3 Modeling the Degradation of Reflectors;247
12.5.4;10.5.4 Modeling the Degradation of Lens Materials;249
12.6;10.6 Luminaire Design Effects;251
12.7;10.7 Conclusions;254
12.8;References;255
13;Chapter 11: Fault Diagnostics and Lifetime Prognostics for Phosphor-Converted White LED Packages;259
13.1;11.1 Introduction;260
13.2;11.2 Prognostics and Health Management;264
13.2.1;11.2.1 PoF-Based PHM;264
13.2.2;11.2.2 Data-Driven-Based PHM;268
13.3;11.3 In Situ Monitoring and Anomaly Detection for Phosphor-Converted White LED Packages;275
13.3.1;11.3.1 Test Vehicle, Experimental Setup, and Data Collection;276
13.3.2;11.3.2 Theory and Methodology;276
13.3.3;11.3.3 Implementation Results and Discussion;281
13.4;11.4 Prognostic of Lumen Maintenance Lifetime for Phosphor-Converted White LED Packages;282
13.4.1;11.4.1 Methodologies and Algorithms;285
13.4.2;11.4.2 Implementation Results and Discussion;290
13.5;11.5 Conclusions;296
13.6;References;298
14;Chapter 12: Advances in LED Solder Joint Reliability Testing and Prediction;304
14.1;12.1 Introduction;304
14.1.1;12.1.1 Solder Joints in Solid-State Lighting Package;304
14.1.2;12.1.2 Challenges for Solder Reliability Assessment in SSL System;305
14.1.3;12.1.3 Challenges for the Prognostic of Remaining Useful Life of Solder Joint in SSL System;308
14.2;12.2 Fatigue Model Derivation for Solder Joint in LGA Assembly;309
14.2.1;12.2.1 Constitutive Law and Material Models;310
14.2.2;12.2.2 Finite Element Modeling;312
14.2.3;12.2.3 Model Derivation;316
14.3;12.3 Geometric Effects of Solder Joint on Board Level Solder Reliability in SSL System;321
14.3.1;12.3.1 Modeling and Simulation Details;322
14.3.2;12.3.2 Parametric Studies and Response Surface Analysis;323
14.4;12.4 In Situ High-Precision Fatigue Damage Monitoring During Accelerated Testing of Solder Joint;331
14.4.1;12.4.1 Geometric Details of Test Sample;333
14.4.2;12.4.2 Temperature Sensor Calibration;335
14.4.3;12.4.3 Thermomechanical Test;335
14.4.4;12.4.4 In Situ DC Electrical Resistance Monitor Setup;335
14.4.5;12.4.5 Micro-tomography Scans of the Solder Assembly;339
14.4.6;12.4.6 Temperature Coefficient of Resistivity of SAC 305;339
14.4.7;12.4.7 Finite Element Model and Simulation Details;341
14.4.8;12.4.8 Monitored Fatigue Damage Evolution and Crack Initiation Determination;343
14.5;12.5 Summary;349
14.6;References;350
15;Chapter 13: Online Testing Method and System for LED Reliability and Their Applications;355
15.1;13.1 Introduction;355
15.2;13.2 Online Testing System: Principle and Method;358
15.3;13.3 System Optimization;362
15.4;13.4 Experimental Verification and a Benchmark;364
15.5;13.5 Error Estimation;366
15.6;13.6 Application I: Effect of Packaging Materials on the Degradation Mechanism of LEDs;368
15.7;13.7 Application II: Effect of Silicone Amount on the Lumen Maintenance of LEDs;374
15.8;13.8 Summary;379
15.9;References;380
16;Chapter 14: Degradation Mechanisms of Mid-power White-Light LEDs;382
16.1;14.1 Introduction;383
16.2;14.2 Optical Degradation Mechanisms Under HTOL;385
16.2.1;14.2.1 Experiment Setup;385
16.2.2;14.2.2 Results and Discussion;388
16.2.2.1;14.2.2.1 Optical Degradation Characteristics;388
16.2.2.2;14.2.2.2 Spectrum Analysis;390
16.2.2.3;14.2.2.3 Chip Deterioration by I-V Characteristic Analysis;392
16.2.2.4;14.2.2.4 Package Degradation Investigation by Physics Analysis;394
16.3;14.3 Optical Degradation Mechanisms Under WHTOL Test;400
16.3.1;14.3.1 Experiment Setup;400
16.3.2;14.3.2 Results;401
16.3.2.1;14.3.2.1 Lumen Degradation;401
16.3.2.2;14.3.2.2 Color Shift;403
16.3.2.3;14.3.2.3 Electrical Characteristics;405
16.3.2.4;14.3.2.4 Failure Analysis;407
16.3.3;14.3.3 Discussion;410
16.3.3.1;14.3.3.1 Optical Degradation Mechanisms: Effects of Chip Deterioration;410
16.3.3.2;14.3.3.2 Optical Degradation Mechanisms: Effects of Package Material Degradation;412
16.4;14.4 Optical Degradation Mechanisms Under HAST;416
16.4.1;14.4.1 Motivation Example;416
16.4.2;14.4.2 High-Temperature Storage;416
16.4.3;14.4.3 Discussion of the Root Cause of Silicone Carbonization;418
16.4.3.1;14.4.3.1 Joule Heating Effects of the LED Packages;419
16.4.3.2;14.4.3.2 Self-Heating Effects of the Phosphors;421
16.4.3.3;14.4.3.3 Blue Light Over-Absorption by Silicone;425
16.4.3.4;14.4.3.4 Simulation and Validation;427
16.5;14.5 Summary;429
16.6;References;430
17;Chapter 15: Assessing the Reliability of Electrical Drivers Used in LED-Based Lighting Devices;434
17.1;15.1 Introduction;434
17.2;15.2 Basics of LED Device Drivers;435
17.2.1;15.2.1 Common Driver Topologies;435
17.2.2;15.2.2 Key Driver Components of LED Device Drivers;435
17.2.3;15.2.3 Common Driver Topologies;440
17.2.4;15.2.4 Common Electrical Stresses in LED Device Drivers;442
17.3;15.3 Accelerated Stress Tests for Electronics;443
17.4;15.4 Accelerated Testing of Components and Luminaires;446
17.5;15.5 Conclusions;453
17.6;References;453
18;Chapter 16: Reliability Prediction of Integrated LED Lamps with Electrolytic Capacitor-Less LED Drivers;456
18.1;16.1 Introduction;457
18.2;16.2 Coupling Effects of Degradations;459
18.2.1;16.2.1 Degradation Modelling;460
18.2.1.1;16.2.1.1 LED Light Source;460
18.2.1.2;16.2.1.2 LED Driver;461
18.2.2;16.2.2 Simulation Methodology;462
18.2.2.1;16.2.2.1 Electronic Simulations;462
18.2.2.2;16.2.2.2 Thermal Simulations;464
18.2.2.3;16.2.2.3 Simulation Methodology;465
18.2.3;16.2.3 Results and Discussions;466
18.2.3.1;16.2.3.1 Parameter Extraction of LED Models;466
18.2.3.2;16.2.3.2 Lamp´s Initial Temperature Distributions;467
18.2.3.3;16.2.3.3 Definition of Different Scenarios;467
18.2.3.4;16.2.3.4 Results and Discussions;468
18.2.3.4.1;LED Current;468
18.2.3.4.2;LED Junction Temperature;468
18.2.3.4.3;Driver´s Temperature;470
18.2.3.4.4;Lumen Maintenance and Lifetime;470
18.3;16.3 The Catastrophic Failure Under Lumen Depreciation;472
18.3.1;16.3.1 General Methodology;473
18.3.2;16.3.2 Modelling;473
18.3.2.1;16.3.2.1 Driver Circuit;473
18.3.2.2;16.3.2.2 Model of LED Light Source;475
18.3.2.3;16.3.2.3 Thermal Model;475
18.3.3;16.3.3 Fault Tree and Failure Rate Models;476
18.3.4;16.3.4 Case Studies and Results;477
18.3.4.1;16.3.4.1 Selection of LED and Driver;477
18.3.4.2;16.3.4.2 Results and Discussions;478
18.3.4.2.1;Constant Light Output (CLO) Mode;478
18.3.4.2.2;Constant Current Mode (CCM);479
18.4;16.4 Conclusions;483
18.5;References;484
19;Chapter 17: Statistical Analysis of Lumen Depreciation for LED Packages;488
19.1;17.1 Introduction;488
19.2;17.2 Problem Formulation;490
19.3;17.3 Statistical Methods;490
19.3.1;17.3.1 Current Agreed Methods;490
19.3.2;17.3.2 Alternative for Model Fitting;494
19.4;17.4 Analysis of the Selected Use Cases;495
19.4.1;17.4.1 Mid-power and High-Power LED Technology;495
19.4.2;17.4.2 Deep Dive into High-Power LED Technology;497
19.5;17.5 Conclusions and Discussion;501
19.6;References;502
20;Chapter 18: Long-Term Reliability Prediction of LED Packages Using Numerical Simulation;504
20.1;18.1 Introduction;504
20.2;18.2 Fatigue Life Evaluation of Wire Bonds During a Thermal Shock Cycle Test;506
20.2.1;18.2.1 Wire Bonding Lifetime Model;507
20.2.1.1;18.2.1.1 Experiments;507
20.2.1.2;18.2.1.2 Finite Element Model;509
20.2.1.3;18.2.1.3 Calibrated Model;510
20.2.2;18.2.2 A LED Package Design Example Using the Wire Bond Lifetime Model;513
20.3;18.3 Quantification of Silicone Degradation During HTOL;514
20.3.1;18.3.1 Linear Viscoelastic Model of PDMS;516
20.3.2;18.3.2 Finite Element Analysis;519
20.3.3;18.3.3 Lumen Depreciation Model;519
20.3.4;18.3.4 A LED Package Design Example Using the Lumen Depreciation Model;523
20.4;18.4 Conclusions;523
20.5;References;525
21;Chapter 19: Corrosion Sensitivity of LED Packages;527
21.1;19.1 Introduction;528
21.2;19.2 Sources of Corrosion;528
21.2.1;19.2.1 Intrinsic Corrosion;529
21.2.2;19.2.2 Extrinsic Corrosion;531
21.2.2.1;19.2.2.1 Corrosion by Components of Light Source;531
21.2.2.2;19.2.2.2 Corrosion by Outgassing of Materials from the Environment;532
21.2.2.3;19.2.2.3 Corrosion by Air Pollution;532
21.3;19.3 Sensitivity to Corrosion by LED Package Design;533
21.3.1;19.3.1 Package Integrity;533
21.3.2;19.3.2 Corrosion-Sensitive Materials;535
21.3.3;19.3.3 Hitting Probability on Surface;536
21.4;19.4 Corrosion Test Methods;538
21.4.1;19.4.1 Standard Test Methods;538
21.4.2;19.4.2 Accelerated Test Methods;540
21.5;19.5 Test Results;541
21.5.1;19.5.1 Sulfur Testing;541
21.5.2;19.5.2 Testing with Halogen Gasses;543
21.5.3;19.5.3 Testing with VOCs;543
21.6;19.6 Harmful Chemicals;544
21.7;19.7 Conclusion;546
21.8;References;546
22;Chapter 20: Reliability Management of a Light-Emitting Diode for Automotive Applications;548
22.1;20.1 Introduction;548
22.2;20.2 Accelerated Life Testing;550
22.3;20.3 Automotive Qualification Process;551
22.3.1;20.3.1 Motivation;551
22.3.2;20.3.2 Automotive Qualification Standards AEC Q101/IEC 60810;552
22.3.3;20.3.3 Why Do We Need LED Qualification?;553
22.4;20.4 LED Qualification Testing According to IEC 60810;554
22.4.1;20.4.1 Sample Selection and Family Definition of LED Packages;554
22.4.2;20.4.2 Moisture Preconditioning and Assembly of LED Packages;556
22.4.3;20.4.3 Thermal Management;557
22.4.4;20.4.4 Sample Lot and Production Requirements;560
22.4.5;20.4.5 Qualification Stress Tests;560
22.4.5.1;20.4.5.1 Temperature and Bias Operation;562
22.4.5.2;20.4.5.2 Temperature, Humidity and Bias Operation;562
22.4.5.3;20.4.5.3 Thermo-mechanical Stress;564
22.4.5.4;20.4.5.4 Mechanical Stress;566
22.4.5.5;20.4.5.5 Electrical Stress;566
22.4.5.6;20.4.5.6 Environmental Stress;567
22.4.6;20.4.6 Miscellaneous Requirements;568
22.4.7;20.4.7 Failure Criteria;568
22.4.8;20.4.8 USCAR-33 Requirement;569
22.5;20.5 Conclusion and Next Steps;570
22.6;20.6 Summary and Outlook;570
22.7;References;570
23;Chapter 21: Lightning Effects on LED-Based Luminaires;572
23.1;21.1 Introduction;572
23.2;21.2 Mechanism of Lightning Propagation;573
23.3;21.3 Effects of Lightning on LEDs and Basic Mitigation Method;575
23.3.1;21.3.1 Effects of Lightning;575
23.3.2;21.3.2 Basic Mitigation;575
23.4;21.4 Lightning Studies on Outdoor LED-Based Luminaires;576
23.4.1;21.4.1 Modelling in ATP-EMTP;576
23.4.2;21.4.2 Studies and Simulation;576
23.5;21.5 Influence of System Type on Expected Overvoltage Levels;579
23.6;21.6 Conclusions;581
23.7;References;582
24;Chapter 22: The Next Frontier: Reliability of Complex Systems;583
24.1;22.1 Introduction;583
24.2;22.2 All Components Matter;584
24.3;22.3 Complex Systems: Availability Rather Than Reliability;585
24.4;22.4 Testing and Validation;587
24.5;22.5 Software Reliability;588
24.6;22.6 Reliability and Data Analytics;590
24.7;22.7 Final Remarks;592
24.8;References;592
25;Index;594



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.