Downey / Fellows | Parameterized Complexity | E-Book | sack.de
E-Book

E-Book, Englisch, 533 Seiten, eBook

Reihe: Monographs in Computer Science

Downey / Fellows Parameterized Complexity


1999
ISBN: 978-1-4612-0515-9
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 533 Seiten, eBook

Reihe: Monographs in Computer Science

ISBN: 978-1-4612-0515-9
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



An approach to complexity theory which offers a means of analysing algorithms in terms of their tractability. The authors consider the problem in terms of parameterized languages and taking "k-slices" of the language, thus introducing readers to new classes of algorithms which may be analysed more precisely than was the case until now. The book is as self-contained as possible and includes a great deal of background material. As a result, computer scientists, mathematicians, and graduate students interested in the design and analysis of algorithms will find much of interest.

Downey / Fellows Parameterized Complexity jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1 Computers, Complexity, and Intractability from the Parametric Point of View.- 1.1 Introduction.- 1.2 The Role of Computational Complexity in Modern Science.- 1.3 The Story of Dr.O, Continued.- 1.4 Reworking the Foundations of Computational Complexity.- 1.5 A Deal with the Devil.- 1.6 How Parameters Arise in Practice.- 1.7 A Distinctive Positive Toolkit.- 1.8 O No?.- 1.9 The Barometer of Parametric Intractability.- 1.10 Structural Aspects of Parameterized Complexity.- 1.11 An Overview of Current Research Horizons.- I Parameterized Tractability.- 2 The Basic Definitions.- 2.1 Fixed-Parameter Tractability.- 2.2 The Advice View.- 3 Some Ad Hoc Methods: The Methods of Bounded Search Tree and Problem Kernel.- 3.1 The Method of Bounded Search Trees.- 3.1.1 The Basic Method.- 3.1.2 Heuristic Improvements, Shrinking the Search Tree.- 3.2 The Method of Reduction to a Problem Kernel.- 3.2.1 The Basic Method.- 3.2.2 Hereditary Properties and Leizhen Cai’s Theorem.- 4 Optimization Problems, Approximation Schemes, and Their Relation with FPT.- 4.1 Optimization Problems.- 4.2 How FPT and Optimization Problems Relate.- 4.3 The Classes MAXSNP, MIN F+?1(h), and FPT.- 5 The Advice View Revisited and LOGSPACE.- 6 Methods via Automata and Bounded Treewidth.- 6.1 Classical Automata Theory.- 6.1.1 Deterministic Finite Automata.- 6.1.2 Nondeterministic Finite Automata.- 6.1.3 Regular Languages.- 6.1.4 The Myhill—Nerode Theorem and the Method of Test Sets.- 6.1.5 Classical Tree Automata.- 6.2 Treewidth.- 6.3 Bodlaender’s Theorem.- 6.4 Parse Trees for Graphs of Bounded Treewidth and an Analog of the Myhill—Nerode Theorem.- 6.5 Courcelle’s Theorem.- 6.5.1 The Basic Theorem.- 6.5.2 Implementing Courcelle’s Theorem.- 6.6 Seese’s Theorem.- 6.7 Notes on MS1 Theory.- 7 Well-Quasi-Orderings and the Robertson-Seymour Theorems.- 7.1 Basic WQO Theory.- 7.2 Thomas’ Lemma.- 7.2.1 Thomas’ Lemma Fails for Path Decompositions.- 7.3 The Graph Minor Theorem for Bounded Treewidth.- 7.4 Excluding a Forest.- 7.5 Connections with Automata Theory and Boundaried Graphs.- 7.6 A Sketch of the Proof of the Graph Minor Theorem.- 7.7 Immersions and the Nash-Williams Conjecture.- 7.8 Applications of the Obstruction Principle and WQO’s.- 7.9 Effectivizations of Obstruction-Based Methods.- 7.9.1 Effectivization by Self-Reduction.- 7.9.2 Effectivization by Obstruction Set Computation.- 8 Miscellaneous Techniques.- 8.1 Depth-First Search.- 8.2 Bounded-Width Subgraphs, the Plehn-Voigt Theorem, and Induced Subgraphs.- 8.3 Hashing.- II Parameterized Intractability.- 9 Reductions.- 10 The Basic Class W[1] and an Analog of Cook’s Theorem.- 11 Some Other W[1]-Hardness Results.- 12 The W -Hierarchy.- 13 Beyond W[t]-Hardness.- 14 Fixed Parameter Analogs of PSPACE and k-Move Games.- 15 Provable Intractability: The Class XP.- III Structural and Other Results.- 16 Another Basis for the W -Hierarchy, the Tradeoff-Theorem, and Randomized Reductions.- 17 Relationships with Classical Complexity and Limited Nondeterminism.- 17.1 Classical Complexity.- 17.2 Nondeterminism in P, LOGNP, and the Cai-Chen Model and Other Models.- 18 The Monotone and Antimonotone Collapse Theorems: MONOTONEW[2t + 1] = W[2t] and ANTIMONOTONEW[2t + 2] = W[2t + 1].- 19 The Structure of Languages Under Parameterized Reducibilities.- 19.1 Some Tools.- 19.2 Results.- IV Appendix.- A A Problem Compendium and Guide to W-Hierarchy Completeness, Hardness, and Classification; and Some Research Horizons.- B Research Horizons.- B.2 A Lineup of Tough Customers.- B.3 Connections Between Classical and Parameterized Complexity.- B.4 Classification Gaps.- B.5 Structural Issues and Analogs of Classical Results.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.