Doucet / Gordon / Freitas | Sequential Monte Carlo Methods in Practice | Buch | 978-0-387-95146-1 | sack.de

Buch, Englisch, 582 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1080 g

Reihe: Information Science and Statistics

Doucet / Gordon / Freitas

Sequential Monte Carlo Methods in Practice


2001
ISBN: 978-0-387-95146-1
Verlag: Springer

Buch, Englisch, 582 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1080 g

Reihe: Information Science and Statistics

ISBN: 978-0-387-95146-1
Verlag: Springer


Monte Carlo methods are revolutionising the on-line analysis of data

in fields as diverse as financial modelling, target tracking and

computer vision. These methods, appearing under the names of bootstrap

filters, condensation, optimal Monte Carlo filters, particle filters

and survial of the fittest, have made it possible to solve numerically

many complex, non-standarard problems that were previously

intractable.

This book presents the first comprehensive treatment of these

techniques, including convergence results and applications to

tracking, guidance, automated target recognition, aircraft navigation,

robot navigation, econometrics, financial modelling, neural

networks,optimal control, optimal filtering, communications,

reinforcement learning, signal enhancement, model averaging and

selection, computer vision, semiconductor design, population biology,

dynamic Bayesian networks, and time series analysis. This will be of

great value to students, researchers and practicioners, who have some

basic knowledge of probability.

Arnaud Doucet received the Ph. D. degree from the University of Paris-

XI Orsay in 1997. From 1998 to 2000, he conducted research at the

Signal Processing Group of Cambridge University, UK. He is currently

an assistant professor at the Department of Electrical Engineering of

Melbourne University, Australia. His research interests include

Bayesian statistics, dynamic models and Monte Carlo methods.

Nando de Freitas obtained a Ph.D. degree in information engineering

from Cambridge University in 1999. He is presently a research

associate with the artificial intelligence group of the University of

California at Berkeley. His main research interests are in Bayesian

statistics and the application of on-line and batch Monte Carlo

methods to machine learning.

Doucet / Gordon / Freitas Sequential Monte Carlo Methods in Practice jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1 An Introduction to Sequential Monte Carlo Methods.- 2 Particle Filters — A Theoretical Perspective.- 3 Interacting Particle Filtering With Discrete Observations.- 4 Sequential Monte Carlo Methods for Optimal Filtering.- 5 Deterministic and Stochastic Particle Filters in State-Space Models.- 6 RESAMPLE—MOVE Filtering with Cross-Model Jumps.- 7 Improvement Strategies for Monte Carlo Particle Filters.- 8 Approximating and Maximising the Likelihood for a General State-Space Model.- 9 Monte Carlo Smoothing and Self-Organising State-Space Model.- 10 Combined Parameter and State Estimation in Simulation-Based Filtering.- 11 A Theoretical Framework for Sequential Importance Sampling with Resampling.- 12 Improving Regularised Particle Filters.- 13 Auxiliary Variable Based Particle Filters.- 14 Improved Particle Filters and Smoothing.- 15 Posterior Cramér-Rao Bounds for Sequential Estimation.- 16 Statistical Models of Visual Shape and Motion.- 17 Sequential Monte Carlo Methods for Neural Networks.- 18 Sequential Estimation of Signals under Model Uncertainty.- 19 Particle Filters for Mobile Robot Localization.- 20 Self-Organizing Time Series Model.- 21 Sampling in Factored Dynamic Systems.- 22 In-Situ Ellipsometry Solutions Using Sequential Monte Carlo.- 23 Manoeuvring Target Tracking Using a Multiple-Model Bootstrap Filter.- 24 Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks.- 25 Particles and Mixtures for Tracking and Guidance.- 26 Monte Carlo Techniques for Automated Target Recognition.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.