Douc / Moulines / Priouret | Markov Chains | E-Book | sack.de
E-Book

E-Book, Englisch, 757 Seiten, eBook

Reihe: Springer Series in Operations Research and Financial Engineering

Douc / Moulines / Priouret Markov Chains


Erscheinungsjahr 2018
ISBN: 978-3-319-97704-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 757 Seiten, eBook

Reihe: Springer Series in Operations Research and Financial Engineering

ISBN: 978-3-319-97704-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book covers the classical theory of Markov chains on general state-spaces as well as many recent developments. The theoretical results are illustrated by simple examples, many of which are taken from Markov Chain Monte Carlo methods. The book is self-contained, while all the results are carefully and concisely proven. Bibliographical notes are added at the end of each chapter to provide an overview of the literature. Part I lays the foundations of the theory of Markov chain on general states-space. Part II covers the basic theory of irreducible Markov chains on general states-space, relying heavily on regeneration techniques. These two parts can serve as a text on general state-space applied Markov chain theory. Although the choice of topics is quite different from what is usually covered, where most of the emphasis is put on countable state space, a graduate student should be able to read almost all these developments without any mathematical background deeperthan that needed to study countable state space (very little measure theory is required). Part III covers advanced topics on the theory of irreducible Markov chains. The emphasis is on geometric and subgeometric convergence rates and also on computable bounds. Some results appeared for a first time in a book and others are original. Part IV are selected topics on Markov chains, covering mostly hot recent developments.
Douc / Moulines / Priouret Markov Chains jetzt bestellen!

Zielgruppe


Graduate

Weitere Infos & Material


Part I Foundations.- Markov Chains: Basic Definitions.- Examples of Markov Chains.- Stopping Times and the Strong Markov Property.- Martingales, Harmonic Functions and Polsson-Dirichlet  Problems.- Ergodic Theory for Markov Chains.- Part II Irreducible Chains: Basics.- Atomic Chains.- Markov Chains on a Discrete State Space.- Convergence of Atomic Markov Chains.- Small Sets, Irreducibility and Aperiodicity.- Transience, Recurrence and Harris Recurrence.- Splitting Construction and Invariant Measures.- Feller and T-kernels.- Part III Irreducible Chains: Advanced Topics.- Rates of Convergence for Atomic Markov Chains.- Geometric Recurrence and Regularity.- Geometric Rates of Convergence.- ( f, r )-recurrence and Regularity.- Subgeometric Rates of Convergence.- Uniform and V -geometric Ergodicity by Operator Methods.- Coupling for Irreducible Kernels.- Part IV Selected Topics.- Convergence in the Wasserstein Distance.- Central Limit Theorems.- Spectral Theory.- Concentration Inequalities.- Appendices.- A Notations.- B Topology, Measure, and Probability.- C Weak Convergence.- D Total and V-total Variation Distances.- E Martingales.- F Mixing Coefficients.- G Solutions to Selected Exercises.


Randal Douc is a Professor in the CITI Department at Telecom SudParis. His research interests include parameter estimation in general Hidden Markov models and Markov Chain Monte Carlo (MCMC) and sequential Monte Carlo methods. Eric Moulines is a Professor at Ecole Polytechnique's Applied Mathematics Center (CMAP, UMR Ecole Polytechnique/CNRS).   Pierre Priouret is a Professor at Université Pierre et Marie Curie Philippe Soulier is a professor at Université de Paris-Nanterre



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.