Doorn | Stochastic Monotonicity and Queueing Applications of Birth-Death Processes | E-Book | sack.de
E-Book

E-Book, Englisch, Band 4, 118 Seiten, eBook

Reihe: Lecture Notes in Statistics

Doorn Stochastic Monotonicity and Queueing Applications of Birth-Death Processes


Erscheinungsjahr 2012
ISBN: 978-1-4612-5883-4
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 4, 118 Seiten, eBook

Reihe: Lecture Notes in Statistics

ISBN: 978-1-4612-5883-4
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



A stochastic process {X(t): 0 S t < =} with discrete state space S c ~ is said to be stochastically increasing (decreasing) on an interval T if the probabilities Pr{X(t) > i}, i E S, are increasing (decreasing) with t on T. Stochastic monotonicity is a basic structural property for process behaviour. It gives rise to meaningful bounds for various quantities such as the moments of the process, and provides the mathematical groundwork for approximation algorithms. Obviously, stochastic monotonicity becomes a more tractable subject for analysis if the processes under consideration are such that stochastic mono tonicity on an inter val 0 < t < E implies stochastic monotonicity on the entire time axis. DALEY (1968) was the first to discuss a similar property in the context of discrete time Markov chains. Unfortunately, he called this property "stochastic monotonicity", it is more appropriate, however, to speak of processes with monotone transition operators. KEILSON and KESTER (1977) have demonstrated the prevalence of this phenomenon in discrete and continuous time Markov processes. They (and others) have also given a necessary and sufficient condition for a (temporally homogeneous) Markov process to have monotone transition operators. Whether or not such processes will be stochas tically monotone as defined above, now depends on the initial state distribution. Conditions on this distribution for stochastic mono tonicity on the entire time axis to prevail were given too by KEILSON and KESTER (1977).

Doorn Stochastic Monotonicity and Queueing Applications of Birth-Death Processes jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 : Preliminaries.- 1.1 Markov processes.- 1.2 Stochastic monotonicity.- 1.3 Birth-death processes.- 1.4 Some notation and terminology.- 2 : Natural Birth-Death Processes.- 2.1 Some basic properties.- 2.2 The spectral representation.- 2.3 Exponential ergodicity.- 2.4 The moment problem and related topics.- 3 : Dual Birth-Death Processes.- 3.1 Introduction.- 3.2 Duality relations.- 3.3 Ergodic properties.- 4 : Stochastic Monotonicity: General Results.- 4.1 The case ?0 = 0.- 4.2 The case ?0 > 0.- 4.3 Properties of E(t).- 5 : Stochastic Monotonicity: Dependence on the Initial State Distribution.- 5.1 Introduction to the case of a fixed initial state.- 5.2 The transient and null recurrent process.- 5.3 The positive recurrent process.- 5.4 The case of an initial state distribution with finite support.- 6 : The M/M/S Queue Length Process.- 6.1 Introduction.- 6.2 The spectral function.- 6.3 Stochastic monotonicity.- 6.4 Exponential ergodicity.- 7 : A Queueing Model Where Potential Customers are Discouraged by Queue Length.- 7.1 Introduction.- 7.2 The spectral representation.- 7.3 Stochastic monotonicity and exponential ergodicity.- 8 : Linear Growth Birth-Death Processes.- 8.1 Introduction.- 8.2 Stochastic monotonicity.- 9 : The Mean of Birth-Death Processes.- 9.1 Introduction.- 9.2 Representations.- 9.3 Sufficient conditions for finiteness.- 9.4 Behaviour of the mean in special cases.- 10 : The Truncated Birth-Death Process.- 10.1 Introduction.- 10.2 Preliminaries.- 10.3 The sign structure of P’(t).- 10.4 Stochastic monotonicity.- Appendix 1 : Proof of the Sign Variation Diminishing Property of Strictly Totally Positive Matrices.- Appendix 2: On Products of Infinite Matrices.- Appendix 3: On the Sign of Certain Quantities.- Appendix 4: Proof of Theorem 10.2.8.-References.- Notation Index.- Author Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.