Dogançay / Dogancay | Partial-Update Adaptive Signal Processing | E-Book | sack.de
E-Book

E-Book, Englisch, 296 Seiten

Dogançay / Dogancay Partial-Update Adaptive Signal Processing

Design Analysis and Implementation
1. Auflage 2008
ISBN: 978-0-08-092115-0
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

Design Analysis and Implementation

E-Book, Englisch, 296 Seiten

ISBN: 978-0-08-092115-0
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Partial-update adaptive signal processing algorithms not only permit significant complexity reduction in adaptive filter implementations, but can also improve adaptive filter performance in telecommunications applications. This book gives state-of-the-art methods for the design and development of partial-update adaptive signal processing algorithms for use in systems development.
Partial-Update Adaptive Signal Processing provides a comprehensive coverage of key partial updating schemes, giving detailed information on the theory and applications of acoustic and network echo cancellation, channel equalization and multiuser detection. It also examines convergence and stability issues for partial update algorithms, providing detailed complexity analysis and a unifying treatment of partial-update techniques.
Features:
• Advanced analysis and design tools
• Application examples illustrating the use of partial-update adaptive signal processing
• MATLAB codes for developed algorithms
This unique reference will be of interest to signal processing and communications engineers, researchers, R&D engineers and graduate students.
'This is a very systematic and methodical treatment of an adaptive signal processing topic, of particular significance in power limited applications such as in wireless communication systems and smart ad hoc sensor networks. I am very happy to have this book on my shelf, not to gather dust, but to be consulted and used in my own research and teaching activities' - Professor A. G. Constantinides, Imperial College, London
About the author:
Kutluyil Dogançay is an associate professor of Electrical Engineering at the University of South Australia. His research interests span statistical and adaptive signal processing and he serves as a consultant to defence and private industry. He was the Signal Processing and Communications Program Chair of IDC Conference 2007, and is currently chair of the IEEE South Australia Communications and Signal Processing Chapter.
* Advanced analysis and design tools
* Algorithm summaries in tabular format
* Case studies illustrate the application of partial update adaptive signal processing
* MATLAB code listings on an accompanying website

Dogançay / Dogancay Partial-Update Adaptive Signal Processing jetzt bestellen!

Weitere Infos & Material


1;Front cover;1
2;Title page;2
3;Copyright page;3
4;Dedication;4
5;Acknowledgements;5
6;Table of Contents;6
7;Preface;12
8;Chapter 1. Introduction;14
8.1;Adaptive signal processing;14
8.2;Examples of adaptive filtering;14
8.2.1;Adaptive system identification;15
8.2.2;Adaptive inverse system identification;17
8.3;Raison d'être for partial coefficient updates;19
8.3.1;Resource constraints;19
8.3.2;Convergence performance;22
8.3.3;System identification with white input signal;23
8.3.4;System identification with correlated input signal;30
9;Chapter 2. Approaches to partial coefficient updates;38
9.1;Introduction;38
9.2;Periodic partial updates;39
9.2.1;Example 1: Convergence performance;43
9.2.2;Example 2: Convergence difficulties;44
9.3;Sequential partial updates;46
9.3.1;Example 1: Convergence performance;50
9.3.2;Example 2: Cyclostationary inputs;51
9.3.3;Example 3: Instability;52
9.4;Stochastic partial updates;56
9.4.1;System identification example;58
9.5; M -max updates;59
9.5.1;Example 1: Eigenvalue spread of RM ;65
9.5.2;Example 2: Convergence performance;65
9.5.3;Example 3: Convergence rate and eigenvalues of RM ;68
9.5.4;Example 4: Convergence difficulties;71
9.5.5;Example 5: Instability;72
9.6;Selective partial updates;73
9.6.1;Constrained optimization;74
9.6.2;Instantaneous approximation of Newton's method;78
9.6.3; q -Norm constrained optimization;80
9.6.4;Averaged system;83
9.6.5;Example 1: Eigenanalysis;83
9.6.6;Example 2: Convergence performance;84
9.6.7;Example 3: Instability;84
9.7;Set membership partial updates;87
9.7.1;Example 1: Convergence performance;91
9.7.2;Example 2: Instability;91
9.8;Block partial updates;91
9.9;Complexity considerations;95
10;Chapter 3. Convergence and stability analysis;96
10.1;Introduction;96
10.2;Convergence performance;96
10.3;Steady-state analysis;99
10.3.1;Partial-update LMS algorithms;100
10.3.2;Partial-update NLMS algorithms;105
10.3.3;Simulation examples for steady-state analysis;110
10.4;Convergence analysis;115
10.4.1;Partial-update LMS algorithms;121
10.4.2;Partial-update NLMS algorithms;138
10.4.3;Simulation examples for convergence analysis;144
11;Chapter 4. Partial-update adaptive filters;156
11.1;Introduction;156
11.2;Least-mean-square algorithm;157
11.3;Partial-update LMS algorithms;158
11.3.1;Periodic-partial-update LMS algorithm;158
11.3.2;Sequential-partial-update LMS algorithm;158
11.3.3;Stochastic-partial-update LMS algorithm;159
11.3.4; M -max LMS algorithm;160
11.3.5;Computational complexity;160
11.4;Normalized least-mean-square algorithm;162
11.5;Partial-update NLMS algorithms;164
11.5.1;Periodic-partial-update NLMS algorithm;164
11.5.2;Sequential-partial-update NLMS algorithm;164
11.5.3;Stochastic-partial-update NLMS algorithm;165
11.5.4; M -max NLMS algorithm;165
11.5.5;Selective-partial-update NLMS algorithm;165
11.5.6;Set-membership partial-update NLMS algorithm;166
11.5.7;Computational complexity;166
11.6;Affine projection algorithm;169
11.7;Partial-update affine projection algorithms;171
11.7.1;Periodic-partial-update APA;172
11.7.2;Sequential-partial-update APA;172
11.7.3;Stochastic-partial-update APA;173
11.7.4; M -max APA;173
11.7.5;Selective-partial-update APA;174
11.7.6;Set-membership partial-update APA;176
11.7.7;Selective-regressor APA;178
11.7.8;Computational complexity;180
11.8;Recursive least square algorithm;184
11.9;Partial-update RLS algorithms;189
11.9.1;Periodic-partial-update RLS algorithm;191
11.9.2;Sequential-partial-update RLS algorithm;192
11.9.3;Stochastic-partial-update RLS algorithm;192
11.9.4;Selective-partial-update RLS algorithm;192
11.9.5;Set-membership partial-update RLS algorithm;194
11.9.6;Partial-update RLS simulations;195
11.9.7;Computational complexity;196
11.10;Transform-domain least-mean-square algorithm;200
11.10.1;Power normalization;208
11.10.2;Comparison of power normalization algorithms;211
11.11;Partial-update transform-domain LMS algorithms;214
11.11.1;Periodic-partial-update transform-domain LMS algorithm;214
11.11.2;Sequential-partial-update transform-domain LMS algorithm;214
11.11.3;Stochastic-partial-update transform-domain LMS algorithm;214
11.11.4; M -max transform-domain LMS algorithm;215
11.11.5;Computational complexity;217
11.12;Generalized-subband-decomposition least-mean-square algorithm;220
11.12.1;Relationship between GSD-LMS coefficients and equivalent time-domain response;224
11.12.2;Eigenvalue spread of GSD input correlation matrix;226
11.13;Partial-update GSD-LMS algorithms;229
11.13.1;Periodic-partial-update GSD-LMS algorithm;229
11.13.2;Sequential-partial-update GSD-LMS algorithm;229
11.13.3;Stochastic-partial-update GSD-LMS algorithm;230
11.13.4; M -max GSD-LMS algorithm;231
11.13.5;Computational complexity;233
11.14;Simulation examples: Channel equalization;235
12;Chapter 5. Selected applications;246
12.1;Introduction;246
12.2;Acoustic echo cancellation;246
12.3;Network echo cancellation;249
12.3.1;PNLMS and -law PNLMS with selective partial updates;252
12.4;Blind channel equalization;258
12.4.1;Normalized CMA;262
12.4.2;Selective-partial-update NCMA;262
12.4.3;Simulation examples;264
12.5;Blind adaptive linear multiuser detection;266
12.5.1;MUD in synchronous DS-CDMA;269
12.5.2;Blind multiuser NLMS algorithm;272
12.5.3;Selective-partial-update NLMS for blind multiuser detection;273
12.5.4;Simulation examples;275
13;Chapter A. Overview of fast sorting algorithms;278
13.1;Introduction;278
13.2;Running min/max and sorting algorithms;278
13.2.1;Divide-and-conquer approaches;278
13.2.2;Maxline algorithm;281
13.2.3;The Gil--Werman algorithm;281
13.2.4;Sortline algorithm;282
13.3;Heapsort algorithm;283
14;References;285
15;Index;291



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.