Doetsch / Courant | Theorie und Anwendung der Laplace-Transformation | E-Book | sack.de
E-Book

E-Book, Deutsch, Band 67, 438 Seiten, eBook

Reihe: Grundlehren der mathematischen Wissenschaften

Doetsch / Courant Theorie und Anwendung der Laplace-Transformation


Erscheinungsjahr 2013
ISBN: 978-3-642-99536-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Deutsch, Band 67, 438 Seiten, eBook

Reihe: Grundlehren der mathematischen Wissenschaften

ISBN: 978-3-642-99536-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Doetsch / Courant Theorie und Anwendung der Laplace-Transformation jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


I. Teil. Allgemeine Theorie der Laplace-Transformation..- 1. Kapitel: Grundbegriffe der Funktionalanalysis.- 2. Kapitel: Geschichtliches über die Laplace-Transformation.- 3. Kapitel: Definition und analytische Eigenschaften der Laplace-Transformation.- 4. Kapitel: Allgemeine funktionentheoretische Eigenschaften der l-Funktionen.- 5. Kapitel: Die im Unendlichen regulären l-Funktionen.- 6. Kapitel: Die komplexe Umkehrformel der Laplace-Transformation.- 7. Kapitel: Andere Umkehrformeln für die Laplace-Transformation.- 8. Kapitel: Die Abbildung der fundamentalen Operationen an Funktionen.- II. Teil. Reihenentwicklungen.- 9. Kapitel: Die Übertragung von Reihenentwicklungen.- III. Teil. Asymptotisches Verhalten von Funktionen.- 10. Kapitel: Abelsche und Taubersche Sätze.- 11. Kapitel: Ein allgemeines Prinzip der asymptotischen Entwicklung und die verschiedenen Arten von Asymptotik.- 12. Kapitel: Abelsche Asymptotik.- 13. Kapitel: Taubersche Asymptotik.- 14. Kapitel: Indirekte Abelsche Asymptotik.- IV. Teil. Integralgleichungen.- 15. Kapitel: Integralgleichungen vom reellen Faltungstypus.- 16. Kapitel: Funktionalrelationen mit Faltungsintegralen, insbesondere transzendente Additionstheoreme.- 17. Kapitel: Integralgleichungen und Funktionalrelationen vom komplexen Faltungstypus.- V. Teil. Differentialgleichungen.- 18. Kapitel: Gewöhnliche Differentialgleichungen.- 19. Kapitel: Allgemeines über die Behandlung von partiellen Differentialgleichungen durch Funktionaltransformationen.- 20. Kapitel: Die Wärmeleitungsgleichung (parabolischer Typ).- 21. Kapitel: Die Telegraphengleichung und die Wellengleichung (hyperbolischer Typ).- 22. Kapitel: Die Potentialgleichung (elliptischer Typ).- 23. Kapitel: Gleichungen mit variablen Koeffizienten.- 24. Kapitel: Die Beziehungen zumHeaviside-Kalkül und zur sog. funktionentheoretischen Methode.- 25. Kapitel: Huygenssches und Eulersches Prinzip.- 1. Einige Hilfssätze der Analysis.- 2. Tabelle von Laplace-Transformationen.- Historische Anmerkungen.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.