Dobson / Barnett | An Introduction to Generalized Linear Models | E-Book | sack.de
E-Book

E-Book, Englisch, 392 Seiten

Reihe: Chapman & Hall/CRC Texts in Statistical Science

Dobson / Barnett An Introduction to Generalized Linear Models

E-Book, Englisch, 392 Seiten

Reihe: Chapman & Hall/CRC Texts in Statistical Science

ISBN: 978-1-351-72621-4
Verlag: Taylor & Francis
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



An Introduction to Generalized Linear Models, Fourth Edition provides a cohesive framework for statistical modelling, with an emphasis on numerical and graphical methods. This new edition of a bestseller has been updated with new sections on non-linear associations, strategies for model selection, and a Postface on good statistical practice.

Like its predecessor, this edition presents the theoretical background of generalized linear models (GLMs) before focusing on methods for analyzing particular kinds of data. It covers Normal, Poisson, and Binomial distributions; linear regression models; classical estimation and model fitting methods; and frequentist methods of statistical inference. After forming this foundation, the authors explore multiple linear regression, analysis of variance (ANOVA), logistic regression, log-linear models, survival analysis, multilevel modeling, Bayesian models, and Markov chain Monte Carlo (MCMC) methods.

Introduces GLMs in a way that enables readers to understand the unifying structure that underpins them

Discusses common concepts and principles of advanced GLMs, including nominal and ordinal regression, survival analysis, non-linear associations and longitudinal analysis

Connects Bayesian analysis and MCMC methods to fit GLMs

Contains numerous examples from business, medicine, engineering, and the social sciences

Provides the example code for R, Stata, and WinBUGS to encourage implementation of the methods

Offers the data sets and solutions to the exercises online

Describes the components of good statistical practice to improve scientific validity and reproducibility of results.

Using popular statistical software programs, this concise and accessible text illustrates practical approaches to estimation, model fitting, and model comparisons.
Dobson / Barnett An Introduction to Generalized Linear Models jetzt bestellen!

Weitere Infos & Material


Introduction
Model Fitting
Exponential Family and Generalized
Linear Models
Estimation
Inference
Normal Linear Models
Binary Variables and Logistic Regression
Nominal and Ordinal Logistic Regression
Poisson Regression and Log-Linear Models
Survival Analysis
Clustered and Longitudinal Data
Bayesian Analysis
Markov Chain Monte Carlo Methods
Example Bayesian Analyses
Postface
Appendix


Annette J. Dobson is Professor of Biostatistics at the Univesity of Queensland.
Adrian G. Barnett is a professor at the Queensland University of Technology.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.