Do / Pan | Control of Ships and Underwater Vehicles | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 401 Seiten

Reihe: Advances in Industrial Control

Do / Pan Control of Ships and Underwater Vehicles

Design for Underactuated and Nonlinear Marine Systems
1. Auflage 2009
ISBN: 978-1-84882-730-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Design for Underactuated and Nonlinear Marine Systems

E-Book, Englisch, 401 Seiten

Reihe: Advances in Industrial Control

ISBN: 978-1-84882-730-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Most ocean vessels are underactuated but control of their motion in the real ocean environment is essential. Starting with a review of the background on ocean-vessel dynamics and nonlinear control theory, the authors' systematic approach is based on various nontrivial coordinate transformations coupled with advanced nonlinear control design methods. This strategy is then used for the development and analysis of a number of ocean-vessel control systems with the aim of achieving advanced motion control tasks including stabilization, trajectory-tracking, path-tracking and path-following. Control of Ships and Underwater Vehicles offers the reader: - new results in the nonlinear control of underactuated ocean vessels; - efficient designs for the implementation of controllers on underactuated ocean vessels; - numerical simulations and real-time implementations of the control systems designed on a scale-model ship for each controller developed to illustrate their effectiveness and afford practical guidance.

Doctor Do's major contribution to systems and control is his research on control of systems subject to nonholonomic constraints such as underactuated mechanical systems including surface ships, underwater vehicles, mobile robots and aircraft, and control of networks of multiple vehicles. He has made significant contribution to the understanding dynamics and developing novel methods to design controllers for these systems. For nonholonomic systems with strong nonlinear drifts and unknown parameters, he developed a method called 'input-to-state scaling' to design a global asymptotic stabilizer. For land, air and ocean vehicles, he proposed various solutions to the problems of stabilization, trajectory-tracking and path-following. He introduced a methodology called 'dynamics from a different view', which results in several ways to derive coordinate transformations to overcome difficulties in controlling these vehicles. His involvement with Western Australia ship- and air-vehicle-building industries (Austal, Shipdynamics, Entecho) has enriched his industrial activities and practical experience. Currently, he is a senior lecturer in the School of Mechanical Engineering at the University of Western Australia. He teaches 'Advanced Control Engineering' and 'Navigation and Marine Control Systems' units.Professor Jie Pan is the Director of the Centre for Acoustics, Dynamics and Vibration at the School of Mechanical Engineering, University of Western Australia. His contribution to the field of applied control was initially in active control of noise and structural vibration. Since 1999, he and his research team have worked on the control of ocean vessel vibration and motion, where he played a role not just as a team leader and project organiser, but also provided physical insight into the understanding of system dynamics and their role in controller design. He also established several fundamental and industrial research projects on active control of marine vessels' vibration, and active vibration control of marine risers, from which several outstanding PhD, Masters and final-year theses were generated and some problems of ride control systems in the Western Australian ship-building industry were solved. Many results described in this monograph are the products or by-products of those projects and thesis work. Professor Pan's teaching covers classical control, advanced control and mechatronics, vibration and signal processing, and acoustical engineering.

Do / Pan Control of Ships and Underwater Vehicles jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Advances in Industrial Control;2
1.1;Advances in Industrial Control;6
2;Series Editors’ Foreword;9
3;Preface;11
3.1;Acknowledgements;12
4;Contents;13
5;Introduction;18
5.1;1.1 Overview of Nonlinear Control Developments;18
5.2;1.2 Difficulties in Control of Underactuated Ocean Vessels;19
5.3;1.3 Organization of the Book;22
6;Part I Mathematical Tools;25
6.1;Mathematical Preliminaries;26
6.1.1;2.1 Lyapunov Stability;26
6.1.2;2.1.1 Definitions;27
6.1.3;2.1.2 Lemmas and Theorems;28
6.1.4;2.1.3 Stability of Cascade Systems;31
6.1.5;2.2 Input-to-state Stability;33
6.1.6;2.3 Control Lyapunov Functions;35
6.1.7;2.4 Backstepping;36
6.1.8;2.5 Stabilization Under Uncertainties;38
6.1.9;2.6 Barbalat-like Lemmas;40
6.1.10;2.7 Controllability and Observability 2.7.1 Controllability and Observability of Linear Time-invariant Systems;42
6.1.11;2.7.2 Controllability and Observability of Linear Time-varying Systems;44
6.1.12;2.7.3 Controllability and Observability of Nonlinear Systems;46
6.1.13;2.7.4 Brockett’s Theorem on Feedback Stabilization;49
6.1.14;2.8 Conclusions;49
7;Part II Modeling and Control Properties of Ocean Vessels;51
7.1;Modeling of Ocean Vessels;52
7.1.1;3.1 Introduction;52
7.1.2;3.2 Basic Motion Tasks;53
7.1.3;3.3 Modeling of Ocean Vessels;55
7.1.4;3.3.1 Kinematics;57
7.1.5;3.3.2 Kinetics;58
7.1.6;3.4 Standard Models for Ocean Vessels;67
7.1.7;3.4.1 Three Degrees of Freedom Horizontal Model;67
7.1.8;3.4.2 Six Degrees of Freedom Model;70
7.1.9;3.5 Conclusions;73
7.2;Control Properties and PreviousWork on Control of Ocean Vessels;74
7.2.1;4.1 Controllability Properties 4.1.1 Acceleration Constraints;74
7.2.2;4.1.2 Kinematic Constraints;75
7.2.3;4.1.3 Controllability at a Point;77
7.2.4;4.1.4 Controllability About a Trajectory;79
7.2.5;4.2 PreviousWork on Control of Underactuated Ocean Vessels;81
7.2.6;4.2.1 Control of Nonholonomic Systems;81
7.2.7;4.2.2 Control of Underactuated Ships and Underwater Vehicles;82
7.2.8;4.3 Conclusions;99
8;Part III Control of Underactuated Ships;100
8.1;Trajectory-tracking Control of Underactuated Ships;101
8.1.1;5.1 Control Objective;101
8.1.2;5.2 Control Design;104
8.1.3;5.3 Stability Analysis;108
8.1.4;5.4 Simulations;115
8.1.5;5.5 Conclusions;117
8.2;Simultaneous Stabilization and Trajectory- tracking Control of Underactuated Ships;120
8.2.1;6.1 Control Objective;120
8.2.2;6.2 Control Design;122
8.2.3;6.3;126
8.2.4;Stability;126
8.2.5;Analysis;126
8.2.6;6.4 Selection of Design Constants;135
8.2.7;6.5 Sensitivity Analysis;136
8.2.8;6.6 Simulations;138
8.2.9;6.7 Conclusions;140
8.3;Partial-state and Output Feedback Trajectory- tracking Control of Underactuated Ships;145
8.3.1;7.1 Control Objective;145
8.3.2;7.2 Partial-state Feedback 7.2.1 Observer Design;147
8.3.3;7.2.2 Coordinate Transformations;150
8.3.4;7.2.3 Control Design;151
8.3.5;7.2.4 Stability Analysis;154
8.3.6;7.2.5 Selection of Design Constants;156
8.3.7;7.3 Output Feedback 7.3.1 Observer Design;157
8.3.8;7.3.2;161
8.3.9;Coordinate Transformations;161
8.3.10;7.3.3 Control Design;164
8.3.11;7.3.4 Stability Analysis;166
8.3.12;7.4 Robustness Discussion;169
8.3.13;7.5 Simulations;170
8.3.14;7.6 Conclusions;171
8.4;Path-tracking Control of Underactuated Ships;174
8.4.1;8.1 Full-State Feedback 8.1.1 Control Objective;174
8.4.2;8.1.2 Coordinate Transformations;177
8.4.3;8.1.3 Control Design;180
8.4.4;8.1.4 Stability Analysis;183
8.4.5;8.1.5 Dealing with Environmental Disturbances;185
8.4.6;8.1.6 Numerical Simulations;189
8.4.7;8.2 Output Feedback 8.2.1 Control Objective;192
8.4.8;8.2.2 Coordinate Transformations;195
8.4.9;8.2.3 Observer Design;197
8.4.10;8.2.4 Control Design with Integral Action;199
8.4.11;8.2.5 Stability Analysis;205
8.4.12;8.2.6 Discussion;209
8.4.13;8.2.7 Experimental Results;214
8.4.14;8.3 Conclusions;220
8.5;Way-point Tracking Control of Underactuated Ships;221
8.5.1;9.1 Control Objective;221
8.5.2;9.2 Full-state Feedback 9.2.1 Control Design;222
8.5.3;9.2.2 Stability Analysis;225
8.5.4;9.3 Output Feedback;232
8.5.5;9.3.1 Observer Design;233
8.5.6;9.3.2 Control Design;236
8.5.7;9.3.3 Stability Analysis;238
8.5.8;9.4 Simulations;245
8.5.9;9.4.1 State Feedback Simulation Results;245
8.5.10;9.4.2 Output Feedback Simulation Results;246
8.5.11;9.5 Conclusions;247
8.6;Path-following of Underactuated Ships Using Serret– Frenet Coordinates;250
8.6.1;10.1 Control Objective;250
8.6.2;10.2 State Feedback 10.2.1 Control Design;253
8.6.3;10.2.2 Stability Analysis;256
8.6.4;10.3 Output Feedback 10.3.1 Observer Design;263
8.6.5;10.3.2 Control Design;266
8.6.6;10.3.3 Stability Analysis;269
8.6.7;10.4 Simulations;271
8.6.8;10.4.1 State Feedback Simulation Results;271
8.6.9;10.4.2 Output Feedback Simulation Results;272
8.6.10;10.5 Conclusions;272
8.7;Path-following of Underactuated Ships Using Polar Coordinates;277
8.7.1;11.1 Control Objective;277
8.7.2;11.2 Control Design 11.2.1 Step 1;280
8.7.3;11.2.2 Step 2;282
8.7.4;11.3;284
8.7.5;Stability;284
8.7.6;Analysis;284
8.7.7;11.4 Discussion of the Initial Condition;288
8.7.8;11.5 Parking and Point-to-point Navigation 11.5.1 Parking;290
8.7.9;11.5.2 Point-to-point Navigation;291
8.7.10;11.6 Numerical Simulations;291
8.7.11;11.6.1 Path-following Simulation Results;293
8.7.12;11.6.2 Point-to-point Simulation Results;293
8.7.13;11.6.3 Parking Simulation Results;294
8.7.14;11.7 Conclusions;295
9;Part IV Control of Underactuated Underwater Vehicles;298
9.1;Trajectory-tracking Control of Underactuated Underwater Vehicles;299
9.1.1;12.1 Control Objective;299
9.1.2;12.2 Coordinate Transformations;301
9.1.3;12.3 Control Design;305
9.1.4;12.3.1 Step 1;306
9.1.5;12.3.2 Step 2;306
9.1.6;12.4 Stability Analysis;308
9.1.7;12.5 Simulations;312
9.1.8;12.6 Conclusions;313
9.2;Path-following of Underactuated Underwater Vehicles;316
9.2.1;13.1 Control Objective;316
9.2.2;13.2 Coordinate Transformations;320
9.2.3;13.3 Control Design;326
9.2.4;13.4 Stability Analysis;331
9.2.5;13.5 Discussion of the Initial Condition;337
9.2.6;13.6 Parking and Point-to-point Navigation 13.6.1 Parking;337
9.2.7;13.6.2 Point-to-point Navigation;338
9.2.8;13.7 Numerical Simulations;339
9.2.9;13.8 Conclusions;340
10;Part V Control of Other Underactuated mechanical Systems;342
10.1;Control of Other Underactuated Mechanical Systems;343
10.1.1;14.1 Mobile Robots 14.1.1 Basic Motion Tasks;343
10.1.2;14.1.2 Modeling and Control Properties;344
10.1.3;14.1.3 Output Feedback Simultaneous Stabilization and Trajectory- tracking;351
10.1.4;14.1.4 Output Feedback Path-following;362
10.1.5;14.1.5 Notes and References;368
10.1.6;14.2 Vertical Take-off and Landing Aircraft 14.2.1 Control Objective;370
10.1.7;14.2.2 Observer Design;371
10.1.8;14.2.3 Coordinate Transformations;372
10.1.9;14.2.4 Control Design;375
10.1.10;14.2.5 Simulations;381
10.1.11;14.2.6 Notes and References;383
10.1.12;14.3 Conclusions;384
10.2;Conclusions and Perspectives;385
10.2.1;15.1 Summary of the Book;385
10.2.2;15.2 Perspectives and Open Problems;387
10.2.3;15.2.1 Further Issues on Control of Single Underactuated Ocean Vessels;388
10.2.4;15.2.2 Coordination Control of Multiple Underactuated Ocean Vessels;389
11;References;391
12;Index;400



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.