Dixit | Examples in Parametric Inference with R | Buch | 978-981-10-0888-7 | sack.de

Buch, Englisch, 423 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 8454 g

Dixit

Examples in Parametric Inference with R


1. Auflage 2016
ISBN: 978-981-10-0888-7
Verlag: Springer Nature Singapore

Buch, Englisch, 423 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 8454 g

ISBN: 978-981-10-0888-7
Verlag: Springer Nature Singapore


This book discusses examples in parametric inference with R. Combining basic theory with modern approaches, it presents the latest developments and trends in statistical inference for students who do not have an advanced mathematical and statistical background. The topics discussed in the book are fundamental and common to many fields of statistical inference and thus serve as a point of departure for in-depth study. The book is divided into eight chapters: Chapter 1 provides an overview of topics on sufficiency and completeness, while Chapter 2 briefly discusses unbiased estimation. Chapter 3 focuses on the study of moments and maximum likelihood estimators, and Chapter 4 presents bounds for the variance. In Chapter 5, topics on consistent estimator are discussed. Chapter 6 discusses Bayes, while Chapter 7 studies some more powerful tests. Lastly, Chapter 8 examines unbiased and other tests.

Senior undergraduate and graduate students in statistics and mathematics, and thosewho have taken an introductory course in probability, will greatly benefit from this book. Students are expected to know matrix algebra, calculus, probability and distribution theory before beginning this course. Presenting a wealth of relevant solved and unsolved problems, the book offers an excellent tool for teachers and instructors who can assign homework problems from the exercises, and students will find the solved examples hugely beneficial in solving the exercise problems.

Dixit Examples in Parametric Inference with R jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


Prerequisite.- Chapter 1. Sufficiency and Completeness.- Chapter 2. Unbiased Estimation.- Chapter 3. Moment and Maximum Likelihood Estimators.- Chapter 4. Bound for the Variance.- Chapter 5. Consistent Estimator.- Chapter 6. Bayes Estimator.- Chapter 7. Most Powerful Test.- Chapter 8. Unbiased and Other Tests.- Bibliography.


Ulhas Jayram Dixit is Professor, at the Department of Statistics, University of Mumbai, India. He is the first Rothamsted International Fellow at Rothamsted Experimental Station in the UK, which is the world’s oldest statistics department. Further, he received the Sesqui Centennial Excellence Award in research and teaching from the University of Mumbai in 2008. He is member of the New Zealand Statistical Association, the Indian Society for Probability and Statistics, Bombay Mathematical Colloquium, and the Indian Association for Productivity, Quality and Reliability. Editor of Statistical Inference and Design of Experiment (published by Narosa), Prof. Dixit has published over 40 papers in several international journals of repute. His topics of interest are outliers, measure theory, distribution theory, estimation, elements of stochastic process, non-parametric inference, stochastic process, linear models, queuing and information theory, multivariate analysis, financial mathematics, statistical methods, design of experiments, and testing of hypothesis. He received his Ph.D. degree from the University of Mumbai in 1989.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.