Dixit | Ensemble Machine Learning | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 438 Seiten

Dixit Ensemble Machine Learning

A beginner's guide that combines powerful machine learning algorithms to build optimized models
1. Auflage 2017
ISBN: 978-1-78829-453-9
Verlag: Packt Publishing
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

A beginner's guide that combines powerful machine learning algorithms to build optimized models

E-Book, Englisch, 438 Seiten

ISBN: 978-1-78829-453-9
Verlag: Packt Publishing
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



An effective guide to using ensemble techniques to enhance machine learning modelsAbout This BookLearn how to maximize popular machine learning algorithms such as random forests, decision trees, AdaBoost, K-nearest neighbor, and moreGet a practical approach to building efficient machine learning models using ensemble techniques with real-world use casesImplement concepts such as boosting, bagging, and stacking ensemble methods to improve your model prediction accuracyWho This Book Is ForThis book is for data scientists, machine learning practitioners, and deep learning enthusiasts who want to implement ensemble techniques and make a deep dive into the world of machine learning algorithms. You are expected to understand Python code and have a basic knowledge of probability theories, statistics, and linear algebra.What You Will LearnUnderstand why bagging improves classification and regression performanceGet to grips with implementing AdaBoost and different variants of this algorithmSee the bootstrap method and its application to baggingPerform regression on Boston housing data using scikit-learn and NumPyKnow how to use Random forest for IRIS data classificationGet to grips with the classification of sonar dataset using KNN, Perceptron, and Logistic RegressionDiscover how to improve prediction accuracy by fine-tuning the model parametersMaster the analysis of a trained predictive model for over-fitting/under-fitting casesIn DetailEnsembling is a technique of combining two or more similar or dissimilar machine learning algorithms to create a model that delivers superior prediction power. This book will show you how you can use many weak algorithms to make a strong predictive model. This book contains Python code for different machine learning algorithms so that you can easily understand and implement it in your own systems.This book covers different machine learning algorithms that are widely used in the practical world to make predictions and classifications. It addresses different aspects of a prediction framework, such as data pre-processing, model training, validation of the model, and more. You will gain knowledge of different machine learning aspects such as bagging (decision trees and random forests), Boosting (Ada-boost) and stacking (a combination of bagging and boosting algorithms).Then you'll learn how to implement them by building ensemble models using TensorFlow and Python libraries such as scikit-learn and NumPy. As machine learning touches almost every field of the digital world, you'll see how these algorithms can be used in different applications such as computer vision, speech recognition, making recommendations, grouping and document classification, fitting regression on data, and more.By the end of this book, you'll understand how to combine machine learning algorithms to work behind the scenes and reduce challenges and common problems.Style and approachThis comprehensive guide offers the perfect blend of theory, examples, and implementations of real-world use cases.

Dixit Ensemble Machine Learning jetzt bestellen!

Autoren/Hrsg.




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.