Diwekar | Introduction to Applied Optimization | E-Book | sack.de
E-Book

E-Book, Englisch, Band 80, 335 Seiten, eBook

Reihe: Applied Optimization

Diwekar Introduction to Applied Optimization

E-Book, Englisch, Band 80, 335 Seiten, eBook

Reihe: Applied Optimization

ISBN: 978-1-4757-3745-5
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



Provides well-written self-contained chapters, including problem sets and exercises, making it ideal for the classroom setting;

Introduces applied optimization to the hazardous waste blending problem;


Explores linear programming, nonlinear programming, discrete optimization, global optimization, optimization under uncertainty, multi-objective optimization, optimal control and stochastic optimal control;


Includes an extensive bibliography at the end of each chapter and an index;


GAMS files of case studies for Chapters 2, 3, 4, 5, and 7 are linked to http://www.springer.com/math/book/978-0-387-76634-8;


Solutions manual available upon adoptions.


Introduction to Applied Optimization is intended for advanced undergraduate and graduate students and will benefit scientists from diverse areas, including engineers.
Diwekar Introduction to Applied Optimization jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Foreword. Acknowledgements. 1: Introduction. 1.1. Problem Formulation: A Cautionary Note. 1.2. Degrees of Freedom Analysis. 1.3. Objective Function, Constraints, and Feasible Region. 1.4. Numerical Optimization. 1.5. Types of Optimization Problems. 1.6. Summary. 2: Linear Programming. 2.1. The Simplex Method. 2.2. Infeasible Solution. 2.3. Unbounded Solution. 2.4. Multiple Solutions. 2.5. Sensitivity Analysis. 2.6. Other Methods. 2.7. Hazardous Waste Blending Problem as an LP. 2.8. Summary. 3: Nonlinear Programming. 3.1. Convex and Concave Functions. 3.2. Unconstrained NLP. 3.3. Necessary and Sufficient Conditions, and Constrained NLP. 3.4. Sensitivity Analysis. 3.5. Numerical Methods. 3.6. Hazardous Waste Blending: An NLP. 3.7. Summary. 4: Discrete Optimization. 4.1. Tree and Network Representation. 4.2. Branch and Bound for IP. 4.3. Numerical Methods for IP, MILP, and MINLP. 4.4. Probabilistic Methods. 4.5. Hazardous Waste Blending: A Combinatorial Problem. 4.6. Summary.5: Optimization Under Uncertainty. 5.1. Types of Problems and Generalized Representation. 5.2. Chance Constrained Programming Method. 5.3. L-shaped Decomposition Method. 5.4. Uncertainty Analysis and Sampling. 5.5. Stochastic Annealing: An Efficient Algorithm for Combinatorial Optimization under Uncertainty. 5.6. Hazardous Waste Blending under Uncertainty. 5.7.Summary. 6: Multi-objective Optimization. 6.1. Nondominated Set. 6.2. Solution Methods. 6.3. Hazardous Waste Blending and Value of Research: An MOP. 6.4. Summary. 7: Optimal control And Dynamic Optimization. 7.1. Calculus of Variations. 7.2. Maximum Principle. 7.3. Dynamic Programming. 7.4. Stochastic Dynamic Programming. 7.5. Reversal of Blending: Optimizing a Separation Process. 7.6. Summary. Appendix A. Appendix B. Index.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.