E-Book, Englisch, 385 Seiten, eBook
Reihe: Advanced Texts in Physics
Dittrich / Reuter Classical and Quantum Dynamics
3rd Auflage 2001
ISBN: 978-3-642-56430-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
From Classical Paths to Path Integrals
E-Book, Englisch, 385 Seiten, eBook
Reihe: Advanced Texts in Physics
ISBN: 978-3-642-56430-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
1. The Action Principles in Mechanics.- 2. The Action Principle in Classical Electrodynamics.- 3. Application of the Action Principles.- 4. Jacobi Fields, Conjugate Points.- 5. Canonical Transformations.- 6. The Hamilton—Jacobi Equation.- 7. Action-Angle Variables.- 8. The Adiabatic Invariance of the Action Variables.- 9. Time-Independent Canonical Perturbation Theory.- 10. Canonical Perturbation Theory with Several Degrees of Freedom.- 11. Canonical Adiabatic Theory.- 12. Removal of Resonances.- 13. Superconvergent Perturbation Theory, KAM Theorem (Introduction).- 14. Poincaré Surface of Sections, Mappings.- 15. The KAM Theorem.- 16. Fundamental Principles of Quantum Mechanics.- 17. Functional Derivative Approach.- 18. Examples for Calculating Path Integrals.- 19. Direct Evaluation of Path Integrals.- 20. Linear Oscillator with Time-Dependent Frequency.- 21. Propagators for Particles in an External Magnetic Field.- 22. Simple Applications of Propagator Functions.- 23. The WKB Approximation.- 24. Computing the trace.- 25. Partition Function for the Harmonic Oscillator.- 26. Introduction to Homotopy Theory.- 27. Classical Chern—Simons Mechanics.- 28. Semiclassical Quantization.- 29. The “Maslov Anomaly” for the Harmonic Oscillator.- 30. Maslov Anomaly and the Morse Index Theorem.- 31. Berry’s Phase.- 32. Classical Analogues to Berry’s Phase.- 33. Berry Phase and Parametric Harmonie Oscillator.- 34. Topological Phases in Planar Electrodynamics.- References.