Dimotikalis / Skiadas | Data Analysis and Related Applications, Volume 5 | Buch | 978-1-83669-041-2 | sack.de

Buch, Englisch, 448 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 780 g

Dimotikalis / Skiadas

Data Analysis and Related Applications, Volume 5


1. Auflage 2025
ISBN: 978-1-83669-041-2
Verlag: John Wiley & Sons

Buch, Englisch, 448 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 780 g

ISBN: 978-1-83669-041-2
Verlag: John Wiley & Sons


This book is a collective work by several leading scientists, analysts, engineers, mathematicians and statisticians, who have been working at the forefront of data analysis and related applications, arising from data science, operations research, engineering, machine learning or statistics.

Data Analysis and Related Applications 5 represents a cross-section of current concerns and research interests in the above scientific areas. The collected material has been divided into appropriate sections to provide the reader with both theoretical and applied information on data analysis methods, models and techniques, along with appropriate applications.

Dimotikalis / Skiadas Data Analysis and Related Applications, Volume 5 jetzt bestellen!

Weitere Infos & Material


Chapter 1 Modeling/Forecasting Patient Recruitment in Multicenter Clinical Trials Using Time-dependent Models 1
Volodymyr ANISIMOV and Lucas OLIVER

1.1 Introduction 1

1.2 Poisson-gamma model with time-dependent rates 5

1.2.1 The case of homogeneous rates 5

1.3 Non-homogeneous PG model 7

1.3.1 Estimation at the interim stage 9

1.3.2 Simulation of non-homogeneous PG model 10

1.4 Testing the recruitment rates for homogeneity 11

1.4.1 Poisson-type test 12

1.4.2 Criterion for testing hypothesis H 0 13

1.4.3 Poisson-gamma test 15

1.5 Implementations 19

1.6 Acknowledgment 20

1.7 References 20

Chapter 2 Forecasting the Next Megacycle of the Economy 23
George S. ATSALAKIS and Ioanna ATSALAKI

2.1 Introduction 23

2.2 2024: the end of an economic megacycle 24

2.3 The role of technology in shaping the future 25

2.4 The economic consequences of the new cycle 25

2.4.1 Presenting past megacycles 26

2.4.2 The structure of economic megacycles 26

2.4.3 Technology as a catalyst for megacycles 27

2.4.4 Historical patterns of energy and economic growth 27

2.5 The future of economic megacycles 28

2.5.1 The 2024–2080 megacycle: a new era of exponential change and growth 28

2.5.2 Stagnation phase: 2024–2052 29

2.5.3 Growth phase: 2052–2080 29

2.5.4 Geopolitical and societal implications 30

2.5.5 Role of labor and automation 31

2.6 Conclusions 31

2.7 References 32

Chapter 3 Modeling Functioning as a Determinant of Wellbeing: A Mediation Analysis 35
Anastasia CHARALAMPI and Catherine MICHALOPOULOU

3.1 Introduction 35

3.2 Methods 37

3.2.1 Procedure and participants 37

3.2.2 Measures and item selection 38

3.2.3 Statistical analyses 40

3.3 Results 41

3.3.1 Univariate analysis 41

3.3.2 Bivariate analysis: correlation analysis 42

3.3.3 Multivariate analysis: mediation analysis 42

3.4 Conclusions 47

3.5 References 48

3.6 Appendix 51

Chapter 4 Cross-Cultural Issues in Psychological Assessment: A Multistrategy Approach 53
Franca CRIPPA, Giulia GOTTI, Raffaella CALATI, Mariangela ZENGA, Kainaat DANYAL and Naved IQBAL

4.1 Introduction 53

4.2 Suicide risk among university students: India and Italy in direct comparison 54

4.3 Merging techniques: A better way in cross-cultural studies? 56

4.4 Do different people respond in the same way to common items? 58

4.5 Conclusions 61

4.6 References 61

Chapter 5 A Control Chart for Zero-Inflated Semi-Continuous Data 65

Fernanda Otília FIGUEIREDO, Adelaide FIGUEIREDO and M. Ivette GOMES

5.1 Introduction 65

5.1.1 Zero-inflated and hurdle models for count data 66

5.1.2 Inflated distributions for semi-continuous data 66

5.2 Zero-inflated Lomax distribution 67

5.2.1 The Lomax and the zero-inflated Lomax distributions 67

5.2.2 Maximum likelihood estimates 68

5.3 Shewhart control chart for monitoring zero-inflated Lomax data 69

5.4 Performance of the proposed control chart 70

5.5 Conclusions 74

5.6 Acknowledgments 76

5.7 References 76

Chapter 6 Further Results on Location Invariant Estimation of the Weibull Tail Coefficient 79
M. Ivette GOMES, Frederico CAEIRO and Lígia HENRIQUES-RODRIGUES

6.1 Introduction 79

6.2 Hill and GMs EVI and WTC-estimators 81

6.2.1 Power-mean-of-exponent- p (PM p) and Holder’s mean-of-order-p (MO p = H p) EVI estimation 81

6.2.2 WTC estimation 83

6.3 Classes of PORT-GMs (PGMs) WTC-estimators 84

6.4 Monte Carlo simulation of the PORT-GPM p (PGPM p) WTC-estimators 85

6.5 Overall comments and open research topics 89

6.6 Acknowledgments 91

6.7 References 91

Chapter 7 What Can we Learn from Malta? An Exploration of Gender Disparities in Education, Work and Money in Europe 95
Erika GRAMMATICA, Francesca GRESELIN and Mariangela ZENGA

7.1 Introduction 95

7.2 Gender gap: education, work and money 96

7.3 Gender Equality Index 98

7.4 Three-way data approach based on principal component analysis 100

7.5 Evidence from principal component analysis 102

7.6 Results of trajectory analysis 103

7.7 Conclusions 106

7.8 Acknowledgments 106

7.9 References 107

Chapter 8 Financial Analysis of a Public Hospital: The Case of the Corfu General Hospital 109
Margarita IOANNIDOU and George MATALLIOTAKIS

8.1 Introduction 109

8.2 Materials and methods 110

8.3 Results 110

8.3.1 Liquidity ratios 110

8.3.2 Financial structure and viability ratios 111

8.3.3 Activity ratios 112

8.3.4 Profitability ratios 113

8.4 Discussion 114

8.5 References 115

Chapter 9 EWMA Control Charts for Skewed Distributions 117
Derya KARAGÖZ and Moustapha Aminou TUKUR

9.1 Introduction 117

9.2 Exponentially weighted moving average control charts 119

9.3 EMMA control charts for the non-normal process 120

9.3.1 The WV EWMA control chart 121

9.3.2 The WSD EWMA control chart 121

9.3.3 Newly proposed SC EWMA control chart 122

9.4 Real data 122

9.5 Simulation study 125

9.6 Simulation algorithm 126

9.7 Results and discussion 127

9.8 Conclusion 131

9.9 References 133

Chapter 10 Assessing the Impact of Renewable Energy Sources on Energy Economics: A Non-Linear Regression Analysis of Hellenic Energy Exchange Market Clearing Prices 135
Emmanuel KARAPIDAKIS, Yiannis KATSIGIANNIS, Konstantinos BLAZAKIS, Marios NIKOLOGIANNIS, George MATALLIOTAKIS, Georgios STAVRAKAKIS, Nikos VENIANAKIS and Paolo BONFINI

10.1 Introduction 135

10.2 Methodology 137

10.2.1 Spearman’s rank 137

10.2.2 Sparse autoencoder 139

10.3 Results 140

10.4 Discussion 142

10.5 Conclusions 143

10.6 Acknowledgments 143

10.7 References 144

Chapter 11 Enhancing Energy Market Stability: Comparative Analysis of Forecasting Techniques for Market Clearing Prices in the Day-Ahead Market 147
Emmanuel KARAPIDAKIS, Yiannis KATSIGIANNIS, Konstantinos BLAZAKIS, Marios NIKOLOGIANNIS, George MATALLIOTAKIS, Georgios STAVRAKAKIS, Nikos VENIANAKIS and Nikolaos SCHETAKIS

11.1 Introduction 147

11.2 Methodology 150

11.3 Results 152

11.4 Discussion 155

11.5 Conclusions 155

11.6 Acknowledgments 155

11.7 References 156

Chapter 12 Using the Coxian Continuous-Time Hidden Markov Model to Analyze Lombardy Region Wards for Older Individuals 159
Hannah MITCHELL, Adele H. MARSHALL and Mariangela ZENGA

12.1 Introduction 160

12.2 Methodology 161

12.3 Data and results 165

12.3.1 Data 165

12.3.2 Results 165

12.4 Conclusions 172

12.5 Practice implications 172

12.6 Conflict of interest 173

12.7 References 173

Chapter 13 Estimators for Extreme Value Index: Advancements in Tail Inference 177
Ayana MATEUS and Frederico CAEIRO

13.1 Introduction 177

13.2 Estimators for the tail parameters 179

13.2.1 The new class of estimators for the EVI 179

13.2.2 Asymptotic properties of the GPWM estimators 181

13.2.3 Estimating an extreme quantile 182

13.3 Monte Carlo simulation study of the GPWM estimators 182

13.3.1 Methodology 183

13.3.2 Results 183

13.4 Conclusion 185

13.5 Acknowledgments 185

13.6 References 185

Chapter 14 Determinants of Students’ Attitude Toward History: An Empirical Approach 187
Aristea MAVROGIANNI, Eleni VASILAKI and Maria GRYDAKI

14.1 Introduction 188

14.2 Previous research 190

14.2.1 Attitude toward history 190

14.2.2 Educational factors 191

14.2.3 Socioeconomic factors 191

14.3 Data and methods 194

14.3.1 Data 194

14.3.2 Empirical methodology 197

14.4 Results 198

14.5 Summary and conclusions 203

14.6 Appendices 204

14.6.1 Appendix A: the initial full questionnaire for the attitude survey toward history (EDIS) 204

14.6.2 Appendix B: the final questionnaire for the attitude survey toward history (EDIS) 206

14.6.3 Appendix C 207

14.7 References 208

Chapter 15 Methodological Procedures for Assessing the Quality of Death Certificates Due to Unknown Causes 217
Neir Antunes PAES

15.1 Introduction 217

15.2 Methods 219

15.2.1 First step: correction of underregistration of deaths (f) 220

15.2.2 Second step: redistribution of deaths due to ill-defined causes 223

15.2.3 Third step: redistribution of deaths due to non-specific causes (garbage codes) 226

15.3 Illustrative example 227

15.4 Conclusions 230

15.5 References 230

Chapter 16 Health Status, Cancer and Pneumonia Death Rates in Europe: 2019–2022 233
Elena RÍHOVÁ and Kornélia SVACINOVÁ

16.1 Introduction 233

16.2 Background 234

16.3 Methods 235

16.4 Results and discussion 237

16.4 Conclusions 244

16.5 References 244

Chapter 17 A Bayesian Asymmetric Approach to Modeling Volatility on Portfolios with Many Assets 247
David SUDA, Monique Borg INGUANEZ and Matthew CAMILLERI

17.1 Introduction 247

17.2 Dynamic principal component analysis 248

17.3 Bayesian Student-t GJR(1,1) model 250

17.4 Asymmetric modeling of a portfolio with many assets 251

17.5 Forecasting, predictive ability and risk estimation 253

17.6 Conclusion 256

17.7 References 256

Chapter 18 Pandemic-Driven Innovations: Utilizing Online Learning and Big Data Analysis for Decision-Making in Educational Environments 259
Leonidas THEODORAKOPOULOS, Ioanna KALLIAMPAKOU, Alexandra THEODOROPOULOU and Gerasimos KALOGERATOS

18.1 Introduction 260

18.2 Literature review 260

18.2.1 Difficulties during the COVID-19 period 260

18.2.2 Effects of COVID-19 on education 261

18.2.3 Big data analysis in educational research 262

18.2.4 Related work 263

18.3 Methodology 264

18.4 Research questions 264

18.4.1 Dataset presentation 265

18.5 Conclusion 273

18.6 Suggestions for further research 274

18.7 References 274

Chapter 19 Credit Card Fraud Detection with Machine Learning and Big Data Analytics: A PySpark Framework Implementation 281
Leonidas THEODORAKOPOULOS, Ioanna KALLIAMPAKOU, Alexandra THEODOROPOULOU and Fotini ZAKKA

19.1 Introduction 281

19.2 Literature review 283

19.2.1 Introduction to credit card fraud detection 283

19.2.2 The importance of detecting credit card fraud 284

19.2.3 Role of machine learning in improving decision-making processes in fraud detection 284

19.2.4 Automated pattern recognition 285

19.2.5 Predictive modeling 285

19.2.6 Dynamic risk scoring 285

19.2.7 Anomaly detection 286

19.2.8 Natural language processing (NLP) 286

19.2.9 Integration with existing systems 286

19.2.10 Credit card fraud detection: machine learning applications 286

19.2.11 Credit card fraud detection using Apache Spark 287

19.2.12 How can machine learning algorithms enhance decision quality in detecting fraud? 288

19.2.13 Improved detection accuracy 288

19.2.14 Real-time processing and analysis 288

19.2.15 Handling big data and complex variables 289

19.2.16 Adaptive learning for evolving threats 289

19.2.17 Cost efficiency through automation 289

19.2.18 Enhanced scalability 289

19.3 Materials and methods 290

19.3.1 Performance evaluation 292

19.4 Results 307

19.4.1 Comparative analysis 314

19.5 Conclusions 315

19.6 Future work 317

19.7 Limitations 317

19.8 References 318

Chapter 20 Quantitative Modeling of the Demographic Aging Process 323
Grazyna TRZPIOT

20.1 Introduction 323

20.2 Literature review 324

20.3 Methodology 325

20.3.1 Dependency ratios – double aging index 327

20.3.2 Multivariate regression model for the double aging index 330

20.4 Research results and discussion 330

20.5 Conclusions 331

20.6 References 332

Chapter 21 Hotel Sales During COVID-19: Evidence from the United States 333
Dimitrios VORTELINOS, Christos FLOROS, Alexandros APOSTOLAKIS and Ioannis PASSAS

21.1 Introduction 333

21.2 Literature review 334

21.3 Travel and tourism economic impact in 2022 335

21.3.1 Travel and tourism GDP 335

21.3.2 Travel and tourism employment 335

21.3.3 Travel and tourism forecasts 336

21.4 Key developments in the hospitality sector in 2022 336

21.4.1 Overall highlights 336

21.4.2 Hotel room demand 337

21.4.3 Occupancy 337

21.4.4 Room revenue 338

21.4.5 Workforce 338

21.4.6 State and local tax revenue 338

21.4.7 US hotel markets 339

21.5 Data and methodology 340

21.5.1 Data description 340

21.5.2 Methodology 340

21.5.3 LARC score 340

21.5.4 Graphical analysis of variables 341

21.6 Results 343

21.7 Concluding remarks and future research 346

21.8 Acknowledgments 346

21.9 References 346

Chapter 22 Investigating the Mediating Role of Religious Services Attendance in the Relationship Between Religion Variables and Social Class Perceptions 349
Aggeliki YFANTI and Catherine MICHALOPOULOU

22.1 Introduction 349

22.2 Method 351

22.2.1 Procedure and participants 351

22.2.2 Measures 352

22.2.3 Statistical analyses 353

22.3 Results 355

22.3.1 Univariate analyses 355

22.3.2 Bivariate analyses: correlation analyses 359

22.3.3 Multivariate analyses: mediation analyses 360

22.4 Conclusions 362

22.5 References 363

Chapter 23 New Methods of Constructing Confidence Intervals of a Sensitive Proportion in Survey Statistics 365
Marta ZALEWSKA and Wojciech NIEMIRO

23.1 Introduction 365

23.2 Method of moments (MM) for ICT data 367

23.3 EM estimation for ICT data and parametric bootstrap 367

23.3.1 Maximum likelihood via the EM algorithm 368

23.3.2 Percentile parametric bootstrap confidence intervals 369

23.4 “Almost exact” confidence intervals for ICT data 369

23.5 Simulation results 371

23.6 Conclusions 375

23.7 References 375

Chapter 24 Spreading Diseases Models Under Vaccination 377
S. ZIMERAS and D. VASILEIOU

24.1 Introduction 377

24.2 Modeling epidemic disease 378

24.3 Vaccination models analysis 380

24.4 SEIVR model 380

24.5 SIRV model 382

24.6 Conclusions 384

24.7 References 385

List of Authors 387

Index 393


Yiannis Dimotikalis works in the Department of Management Science and Technology at the Hellenic Mediterranean University, Greece. His research areas include teaching operations research (analytics), focusing on simulation and optimization.

Christos H. Skiadas is the Founder and Director of the Data Analysis and Forecasting Laboratory in the Technical University of Crete, Greece. He is also the former Vice-Rector of the Technical University of Crete and Chairman of the Department of Production Engineering and Management.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.